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Preface

DNA computation has emerged in the last ten years as an exciting new re-
search field at the intersection (and, some would say, frontiers) of computer
science, biology, engineering, and mathematics. Although anticipated by Feyn-
man as long ago as the 1950s [59], the notion of performing computations at
a molecular level was only realized in 1994, with Adleman’s seminal work [3]
on computing with DNA. Since then the field has blossomed rapidly, with
significant theoretical and experimental results being reported regularly.

Several books [120, 39] have described various aspects of DNA computa-
tion, but this is, to the author’s best knowledge, the first to bring together
descriptions of both theoretical and experimental results. The target audience
is intentionally broad, including students as well as experienced researchers.
We expect that users of the book will have some background in either com-
puter science, mathematics, engineering, or the life sciences. The intention
is that this book be used as a tutorial guide for newcomers to the field as
well as a reference text for people already working in this fascinating area.
To this end, we include two self-contained tutorial chapters (1 and 2), which
convey only those aspects of computer science and biology that are required
to understand the subsequent material.

We now describe in detail the structure of the book. An introduction
places what follows in context, before we motivate the work to be presented
by emphasizing some of the reasons for choosing DNA over other candidate
computational substrates. One reason for choosing to work with DNA is the
size and variety of the molecular “tool box” available to us. Since the dis-
covery of the structure of DNA, a wide range of biological tools have been
developed to facilitate and ease genetic experimentation. Molecular biologists
have available to them a much more diverse set of methods for the manipula-
tion of DNA than they have for any other molecule. It is possible that similar
techniques could, in the future, become available for molecules other than
DNA, but existing methods have the advantage of being ubiquitous, tried,
and tested. We discuss these methods in more detail in Chap. 1.
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In Chap. 2 we introduce some fundamental concepts in theoretical com-
puter science and define what it means to “compute.” We introduce the notion
of a computational problem, and explain why some problems are fundamentally
more difficult than others. This motivates Chap. 3, in which we show how mod-
els of molecular computation may be constructed. We describe several such
formalizations that appeared soon after [3], and discuss their computational
power.

One reason for the current interest in using DNA for computations is
the massive parallelism inherent in laboratory operations on this particular
molecule. When we perform a step in an experiment (say, adding an enzyme
to a test-tube), the operation is performed in parallel on every molecule in the
tube (in reality, reaction dynamics affect the overall efficiency of this process,
but we discount this for the sake of clarity). If we consider that a single drop
of solution can contain trillions of DNA molecules, the potential for massive
parallelism is apparent. However, as we shall see, it is important to harness
this parallelism correctly if we are to make significant progress. In Chap. 4 we
discuss complexity issues in DNA computing, and outline the shortcomings of
early models in the light of these.

By describing attempts to characterize the complexity of molecular algo-
rithms in Chap. 4, we motivate a discussion of feasible and efficient models
of DNA computation. We describe several models that attempt to drive the
field closer to the so-called “killer application,” the application of DNA-based
computers that would establish their superiority in a particular domain.

Chapter 5 is concerned with physical realizations of some of the mod-
els outlined in Chap. 3. We describe several laboratory experiments and the
lessons to be derived from the results obtained. We also describe exciting
“late-breaking” laboratory results that appeared too recently to deal with in
detail.

In Chap. 6 we discuss recent work that has focused attention on the po-
tential for performing computations in vivo, as opposed to in vitro, as has
previously always been the case. We examine the inner workings of the cell
from a computational perspective, and describe recent theoretical and exper-
imental developments.

Core work reported in this monograph was performed by the author as
a doctoral student under the supervision of Alan Gibbons. I owe much to,
and am grateful for, Alan’s wisdom, generosity, patience, and humor. I thank
Grzegorz Rozenberg for offering me the opportunity to publish this work in the
Natural Computing series, and for his friendship and guidance. Many other
colleagues have contributed to the work presented, especially Paul E. Dunne,
David Hodgson, Gerald Owenson, and Steve Wilson. Chris Tofts was the
external examiner of my doctoral thesis, and offered useful advice on content
and presentation. I thank Cheryl Sutton for her help with final typesetting,
and the assistance provided by Dr. Hans Wössner, Ingeborg Mayer, and Ronan
Nugent at Springer, and by Christina Brückner at LE-Tex, is also gratefully
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acknowledged. Finally, I would like to express my gratitude for continued
support from my wife, Justine Ashby.

Exeter Martyn Amos
December, 2004



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 DNA: The Molecule of Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Structure and Manipulation of DNA . . . . . . . . . . . . . . . . . . . 6
1.3 DNA as the Carrier of Genetic Information . . . . . . . . . . . . . . . . . 7
1.4 Operations on DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Theoretical Computer Science: A Primer . . . . . . . . . . . . . . . . . . 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Algorithms and Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 The Turing Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 The Random Access Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 P and NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Models of Molecular Computation . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Filtering Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Splicing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Constructive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Membrane Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



XII Contents

4 Complexity Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 An Existing Model of DNA Computation . . . . . . . . . . . . . . . . . . . 73
4.3 A Strong Model of DNA Computation . . . . . . . . . . . . . . . . . . . . . 76
4.4 Ogihara and Ray’s Boolean Circuit Model . . . . . . . . . . . . . . . . . . 77

4.4.1 Ogihara and Ray’s Implementation . . . . . . . . . . . . . . . . . . 79
4.5 An Alternative Boolean Circuit Simulation . . . . . . . . . . . . . . . . . 82
4.6 Proposed Physical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8 Example Application: Transitive Closure . . . . . . . . . . . . . . . . . . . 88
4.9 P-RAM Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.10 The Translation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.11 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.12 A Worked Example: The List Ranking Problem . . . . . . . . . . . . . 102
4.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.14 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 Physical Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Implementation of Basic Logical Elements . . . . . . . . . . . . . . . . . . 109
5.3 Initial Set Construction Within Filtering Models . . . . . . . . . . . . 110
5.4 Adleman’s Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 Evaluation of Adleman’s Implementation . . . . . . . . . . . . . . . . . . . 115
5.6 Implementation of the Parallel Filtering Model . . . . . . . . . . . . . . 117
5.7 Advantages of Our Implementation . . . . . . . . . . . . . . . . . . . . . . . . 118
5.8 Experimental Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.9 Other Laboratory Implementations . . . . . . . . . . . . . . . . . . . . . . . . 135

5.9.1 Chess Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.9.2 Computing on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.9.3 Gel-Based Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.9.4 Maximal Clique Computation . . . . . . . . . . . . . . . . . . . . . . . 141
5.9.5 Other Notable Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.11 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6 Cellular Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2 Successful Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.3 Gene Unscrambling in Ciliates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4 Biological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4.1 IESs and MDSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.2 Scrambled Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.4.3 Fundamental Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



Contents XIII

6.5 Models of Gene Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



Introduction

“Where a calculator on the ENIAC is equipped with 18,000 vacuum
tubes and weighs 30 tons, computers in the future may have only 1,000
vacuum tubes and perhaps weigh 11

2
tons.” – Popular Mechanics, 1949

[74]

This statement, made just over fifty years ago, is striking because it falls so
short of reality. We have made huge advances in miniaturization since the
days of room-sized computers, and yet the underlying computational frame-
work (the von Neumann architecture) has remained constant. Today’s super-
computers still employ the kind of sequential logic used by the mechanical
dinosaurs of the 1930s.

There exist two main barriers to the continued development of “tradi-
tional”, silicon-based computers using the von Neumann architecture. One is
inherent to the machine architecture, and the other is imposed by the nature
of the underlying computational substrate. A computational substrate may be
defined as “a physical substance acted upon by the implementation of a com-
putational architecture.” Before the invention of silicon integrated circuits,
the underlying substrates were bulky and unreliable. Of course, advances in
miniaturization have led to incredible increases in processor speed and mem-
ory access time. However, there is a limit to how far this miniaturization can
go. Eventually “chip” fabrication will hit a wall imposed by the Heisenberg
Uncertainty Principle (HUP) (see [70] for an accessible introduction). When
chips are so small that they are composed of components a few atoms across,
quantum effects cause interference. The HUP states that the act of observing
these components affects their behavior. As a consequence, it becomes impos-
sible to know the exact state of a component without fundamentally changing
its state.

The second limitation is known as the von Neumann bottleneck. This is
imposed by the need for the central processing unit (CPU) to transfer instruc-
tions and data to and from the main memory. The route between the CPU and
memory may be visualized as a two-way road connecting two towns. When
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the number of cars moving between towns is relatively small, traffic moves
quickly. However, when the number of cars grows, the traffic slows down, and
may even grind to a complete standstill. If we think of the cars as units of
information passing between the CPU and memory, the analogy is complete.
Most computation consists of the CPU fetching from memory and then ex-
ecuting one instruction after another (after also fetching any data required).
Often, the execution of an instruction requires the storage of a result in mem-
ory. Thus, the speed at which data can be transferred between the CPU and
memory is a limiting factor on the speed of the whole computer.

Some researchers are now looking beyond these boundaries and are in-
vestigating entirely new computational architectures and substrates. These
include quantum, optical, and DNA-based computers. It is the last of these
developments that this book concentrates on.

In the late 1950s, the physicist Richard Feynman first proposed the idea
of using living cells and molecular complexes to construct “sub-microscopic
computers.” In his famous talk “There’s Plenty of Room at the Bottom” [59],
Feynman discussed the problem of “manipulating and controlling things on a
small scale”, thus founding the field of nanotechnology. Although he concen-
trated mainly on information storage and molecular manipulation, Feynman
highlighted the potential for biological systems to act as small-scale informa-
tion processors:

The biological example of writing information on a small scale has in-
spired me to think of something that should be possible. Biology is not
simply writing information; it is doing something about it. A biologi-
cal system can be exceedingly small. Many of the cells are very tiny,
but they are very active; they manufacture various substances; they
walk around; they wiggle; and they do all kinds of marvelous things
– all on a very small scale. Also, they store information. Consider the
possibility that we too can make a thing very small which does what
we want – that we can manufacture an object that maneuvers at that
level! [59].

Since the presentation of Feynman’s vision there there has been an explosion of
interest in performing computations at a molecular level. Early developments,
though, were theoretical in nature – the realization of performing computa-
tions at a molecular level had to wait for the development of the necessary
methods and materials. In 1994, Adleman finally showed how a massively
parallel random search may be implemented using standard operations on
strands of DNA [3].

Previous proposals for molecular computers concentrated mainly on the
use of proteins, but Adleman was inspired to use DNA by reading how the
DNA polymerase enzyme “reads” and “writes” at the molecular level (for
a personal account, see [2]). We describe Adleman’s experiment in detail in
Chap. 5, but for now note the similarity between the history of the devel-
opment of “traditional” computers and that of their molecular counterparts.
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Even though their underlying machine model (the von Neumann architec-
ture) had been established for decades, the development of reliable electronic
computers was only made possible by the invention of the transistor, which
facilitated for the first time electronic manipulation of silicon. We may draw
an interesting parallel between this series of events and the development of
molecular computers. Although the concept dates back to the late 1950s, only
now do we have at our disposal the tools and techniques of molecular biology
required to construct prototype molecular computers. For example, just as the
transistor amplifies electrical signals, the polymerase chain reaction (described
in Chap. 1) amplifies DNA samples.

Adleman’s experiment provided the field’s foundations, but others quickly
built upon them. It was clear that, while seminal, Adleman’s approach was
suitable only for the solution of a specific instance of a particular problem
(the Hamiltonian Path Problem; see Chap. 5 for a full description of the ex-
periment). If the idea of computing with molecules were to be applied to a
range of different problems, then a general model of DNA computation was
required, describing both the abstract operations available and their “real
world” implementations. Several such models quickly appeared, each describ-
ing a framework for mapping high-level algorithmic descriptions down to the
level of laboratory operations. These bridged the gap between theory and
experiment, allowing practitioners to describe DNA-based solutions to com-
putational problems in terms of both classical computer science and feasible
biology. Theoretical models of DNA computation are described in depth in
Chap. 3, with particular attention being given to the “mark and destroy”
destructive model developed by the author and others.

The notion of feasibility, alluded to in the previous paragraph, means dif-
ferent things to different people. Whereas a biologist, working in an inherently
“noisy” and unpredictable environment, may be prepared to accept a certain
degree of error in his or her experimental results, a computer scientist may
require absolute precision and predictability of results. Similarly, a computer
scientist may only be interested in algorithms capable of solving problems of
a size that cannot possibly be accomodated by even moderate leaps in the
technology available to a bench biologist. This common disparity between ex-
pectation and reality motivates our study of the notion of the complexity of
a molecular algorithm. We use the term not to describe the nature of the in-
tricate interactions between components of an algorithm, but to derive some
notion of the essential resources it requires. Computer scientists will be famil-
iar with the concepts of time and (memory) space needed by a “traditional”
algorithm, but it is also important to be able to describe these for molecular
algorithms. Here, time may be measured in terms of the number of fundamen-
tal laboratory operations required (or the elapsed real time that they take to
perform), and space in terms of the volume of solution needed to accommo-
date the DNA required for the algorithm to run. Studies of the complexity of
DNA algorithms are described in detail in Chap. 4.
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The initial rush of publications following Adleman’s original paper was
dominated mainly by theoretical results, but empirical results soon followed.
In Chap. 5 we describe several laboratory implementations of algorithms
within models mentioned in the previous paragraph. Most of the significant
results are described in the abstract, in order to capture the essence of the
experimental approach. In order to also highlight the factors to be considered
when designing a protocol to implement a molecular algorithm, particular at-
tention is given to the details of the experiments carried out by the author’s
collaborators.

With recent advances in biology, it is becoming clear that a genome (or
complete genetic sequence of an organism) is not, as is commonly (and er-
roneously) suggested, a “blueprint” describing both components and their
placement, but rather a “parts list” of proteins that interact in an incredibly
complex fashion to build an organism. The focus of biology has turned to-
ward reverse-engineering sequences of interactions in order to understand the
fundamental processes that lead to life. It is clear that, in the abstract, a lot
of these processes may be thought of in computational terms (for example,
one biological component may act, for all intents and purposes, as a switch,
or two components may combine to simulate the behavior of a logic gate).
This realization has stimulated interest in the study of biological systems
from a computational perspective. One possible approach to this is to build a
computational model that captures (and, ultimately, predicts) the sequence of
biological operations within an organism. Another approach is to view specific
biological systems (such as bacteria) as reprogrammable biological comput-
ing devices. By taking well-understood genetic components of a system and
reengineering them, it is possible to modify organisms such that their behav-
ior corresponds to the implementation of some human-defined computation.
Both approaches are described in Chap. 6.

In less than ten years, the field of DNA computation has made huge ad-
vances. Developments in biotechnology have facilitated (and, in some cases,
been motivated by) the search for molecular algorithms. This has sometimes
led to unfortunate speculation that DNA-based computers may, one day, sup-
plant their silicon counterparts. It seems clear, however, that this unrealistic
vision may one day be replaced by a scenario in which both traditional and
biological computers coexist, each occupying various niches of applicability.
Whatever the ultimate applications of biological computers may turn out to
be, they are revolutionizing the interactions between biology, computer sci-
ence, mathematics, and engineering. A new field has emerged to investigate
the crossover between computation and biology, and this volume describes
only its beginnings.
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DNA: The Molecule of Life

“All rising to great places is by a winding stair.” – Francis Bacon

1.1 Introduction

Ever since ancient Greek times, man has suspected that the features of one
generation are passed on to the next. It was not until Mendel’s work on garden
peas was recognized (see [69, 148]) that scientists accepted that both parents
contribute material that determines the characteristics of their offspring. In
the early 20th century, it was discovered that chromosomes make up this
material. Chemical analysis of chromosomes revealed that they are composed
of both protein and deoxyribonucleic acid, or DNA. The question was, which
substance carries the genetic information? For many years, scientists favored
protein, because of its greater complexity relative to that of DNA. Nobody
believed that a molecule as simple as DNA, composed of only four subunits
(compared to 20 for protein), could carry complex genetic information.

It was not until the early 1950s that most biologists accepted the evidence
showing that it is in fact DNA that carries the genetic code. However, the
physical structure of the molecule and the hereditary mechanism was still far
from clear.

In 1951, the biologist James Watson moved to Cambridge to work with a
physicist, Francis Crick. Using data collected by Rosalind Franklin and Mau-
rice Wilkins at King’s College, London, they began to decipher the structure
of DNA. They worked with models made out of wire and sheet metal in an
attempt to construct something that fitted the available data. Once satisfied
with their double helix model (Fig. 1.1), they published the paper [154] (also
see [153]) that would eventually earn them (and Wilkins) the Nobel Prize for
Physiology or Medicine in 1962.
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1.2 The Structure and Manipulation of DNA

Fig. 1.1. Stylized depiction of DNA double helix

DNA (deoxyribonucleic acid) [1, 155] encodes the genetic information of cel-
lular organisms. It consists of polymer chains, commonly referred to as DNA
strands. Each strand may be viewed as a chain of nucleotides, or bases, at-
tached to a sugar-phosphate “backbone.” An n-letter sequence of consecutive
bases is known as an n-mer or an oligonucleotide1 of length n.

The four DNA nucleotides are adenine, guanine, cytosine, and thymine,
commonly abbreviated to A, G, C, and T respectively. Each strand, accord-
ing to chemical convention, has a 5’ and a 3’ end; thus, any single strand has
a natural orientation. This orientation (and, therefore, the notation used) is
due to the fact that one end of the single strand has a free (i.e., unattached
to another nucleotide) 5’ phosphate group, and the other end has a free 3’
deoxyribose hydroxl group. The classical double helix of DNA (Fig. 1.2) is
formed when two separate strands bond. Bonding occurs by the pairwise at-
traction of bases; A bonds with T and G bonds with C. The pairs (A,T ) and
(G,C) are therefore known as complementary base pairs. The two pairs of
bases form hydrogen bonds between each other, two bonds between A and T ,
and three between G and C (Fig. 1.3).

Bases

Hydrogen bond

5’

3’

G-G-A-T-A-G-C-T-G-G-T-A 3’

C-T- C-G-A-C-C-A-T 5’C- A-T-

Fig. 1.2. Structure of double-stranded DNA

In what follows we adopt the following convention: if x denotes an oligo, then
x denotes the complement of x. The bonding process, known as annealing,

1 Commonly abbreviated to “oligo.”
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is fundamental to our implementation. A strand will only anneal to its com-
plement if they have opposite polarities. Therefore, one strand of the double
helix extends from 5’ to 3’, and the other from 3’ to 5’, as depicted in Fig. 1.2.

5’

3’

3’

5’
Hydrogen bonds

Complementary base pairs

A T

CG

T A

C G

Sugar−phosphate

backbone

Fig. 1.3. Detailed structure of double-stranded DNA

1.3 DNA as the Carrier of Genetic Information

The central dogma of molecular biology [49] is that DNA produces RNA, which
in turn produces proteins. The basic “building blocks” of genetic information
are known as genes. Each gene codes for one specific protein and may be
turned on (expressed) or off (repressed) when required.

Protein structure and function

Proteins are the working molecules in organisms, and the properties of living
organisms derive from the properties of the proteins they contain. One of the
most important functions proteins carry out is to act as enzymes. Enzymes act
as specific catalysts; each type of enzyme catalyses a chemical reaction which
would otherwise not take place at all, or at least take place very slowly. As
an aside, the word “enzyme” is derived from the Greek for “in yeast”, as all
early work on enzymes was carried out on extracts of yeast [131]. The name
of an enzyme indicates the type of reaction that it catalyses; for example,
restriction ligase (see Sect. 1.4) catalyses the ligation of DNA strands (this
process is described later). An organism’s metabolism is defined as the the
totality of the thousands of different chemical reactions occurring within it,
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catalysed by thousands of different enzymes. Proteins also have many other
different functions, such as messengers and structural components (human
hair is made up of the protein keratin). So, what determines their specific
properties?

This question may be answered thus: a protein’s properties result from the
sequence of amino acids that comprise it. Proteins are linear chains of amino
acids, strung together rather like beads on a necklace. There are 20 different
amino acids, and, given that proteins can be anything from 50 to 500 amino
acids in length, the number of possible proteins is beyond astronomical. If we
assume that the average protein is made up of 300 amino acids, there are 20300

possible protein sequences. This dwarfs the estimated number of fundamental
particles in the observable universe (1080 [131]).

We now concern ourselves with how protein sequence determines form, or
structure. Each amino acid in the chain has a particular pattern of attraction,
due to its unique molecular structure. The chain of amino acids folds into a
specific three-dimensional shape, or conformation. The protein self-assembles
into this conformation, using only the “information” encoded in its sequence.
Most enzymes assemble into a globular shape, with cavities on their surface.
The protein’s substrate(s) (the molecule(s) acted upon during the reaction
catalysed by that protein) fit into these cavities (or active sites) like a key in
a lock. These cavities enable proteins to bring their substrates close together
in order to facilitate chemical reactions between them.

Hemoglobin is a very important protein that transports oxygen in the
blood. A visualisation2 of the hemoglobin protein [121] is depicted in Fig. 1.4.
A particularly important feature of the protein is the labelled active site,
where oxygen binds.

When the substrate binds to the active site the conformation of the pro-
tein changes. This can be seen in Fig. 1.5, which depicts the formation of a
hexokinase-glucose complex. The hexokinase is the larger molecule; on the left
a molecule of glucose is approaching an active site (the cleft) in the protein.
Note that the conformation of the enzyme changes after binding (depicted on
the right). This behavior, as we shall see later, may be used in the context of
performing computations.

There are many modern techniques available to determine the structure
and sequence of a given protein, but the problem of predicting structure from
sequence is one of the greatest challenges in contemporary bioinformatics. The
rules governing the folding of amino acid chains are as yet not fully understood,
and this understanding is crucial for the success of future predictions.

Transcription and translation

We now describe the processes that determine the amino acid sequence of
a protein, and hence its function. Note that in what follows we assume the

2 All visualisations were created by the author, using the RasMol [138] molecular
visualisation package available from http://www.umass.edu/microbio/rasmol/
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Fig. 1.4. Visualization of the hemoglobin protein

Fig. 1.5. Formation of a hexokinase-glucose complex
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processes described occur in bacteria, rather than in higher organisms such as
humans. In order for a DNA sequence to be converted into a protein molecule,
it must be read (transcribed) and the transcript converted (translated) into a
protein. Transcription of a gene produces a messenger RNA (mRNA) copy,
which can then be translated into a protein.

Transcription proceeds as follows. The mRNA copy is synthesized by an
enzyme known as RNA polymerase. In order to do this, the RNA polymerase
must be able to recognize the specific region to be transcribed. This specificity
requirement facilitates the regulation of genetic expression, thus preventing
the production of unwanted proteins. Transcription begins at specific sites
within the DNA sequence, known as promoters. These promoters may be
thought of as “markers”, or “signs”, in that they are not transcribed into RNA.
The regions that are transcribed into RNA (and eventually translated into
protein) are referred to as structural genes. The RNA polymerase recognizes
the promoter, and transcription begins. In order for the RNA polymerase to
begin transcription, the double helix must be opened so that the sequence of
bases may be read. This opening involves the breaking of the hydrogen bonds
between bases. The RNA polymerase then moves along the DNA template
strand in the 3 → 5’ direction. As it does so, the polymerase creates an
antiparallel mRNA chain (that is, the mRNA strand is the equivalent of the
Watson-Crick complement of the template). However, there is one significant
difference, in that RNA contains uracil instead of thymine. Thus, in mRNA
terms, “U binds with A.”

The RNA polymerase moves along the DNA, the DNA re-coiling into its
double-helix structure behind it, until it reaches the end of the region to be
transcribed. The end of this region is marked by a terminator which, like the
promoter, is not transcribed.

Genetic regulation

Each step of the conversion, from stored information (DNA), through mRNA
(messenger), to protein synthesis (effector), is itself catalyzed by effector
molecules. These effector molecules may be enzymes or other factors that
are required for a process to continue (for example, sugars). Consequently, a
loop is formed, where products of one gene are required to produce further
gene products, and may even influence that gene’s own expression. This pro-
cess was first described by Jacob and Monod in 1961 [82], and described in
further detail in Chap. 6.

1.4 Operations on DNA

Some (but not all) DNA computations apply a specific sequence of biological
operations to a set of strands. These operations are all commonly used by
molecular biologists, and we now describe them in more detail.
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Synthesis

Oligonucleotides may be synthesized to order by a machine the size of a mi-
crowave oven. The synthesizer is supplied with the four nucleotide bases in
solution, which are combined according to a sequence entered by the user.
The instrument makes millions of copies of the required oligo and places them
in solution in a small vial.

Denaturing, annealing, and ligation

Double-stranded DNA may be dissolved into single strands (or denatured)
by heating the solution to a temperature determined by the composition of
the strand [35]. Heating breaks the hydrogen bonds between complementary
strands (Fig. 1.6). Since a G − C pair is joined by three hydrogen bonds, the
temperature required to break it is slightly higher than that for an A−T pair,
joined by only two hydrogen bonds. This factor must be taken into account
when designing sequences to represent computational elements.

Annealing is the reverse of melting, whereby a solution of single strands
is cooled, allowing complementary strands to bind together (Fig. 1.6).

G-G-A-T-A-G-C-T-G-G-T-A

C-C-T-A-T-C-G-A-C-C-A-T

G-G-A-T-A-G-C-T-G-G-T-A

C-C-T-A-T-C-G-A-C-C-A-T

5’ 3’

3’ 5’

by cooling solution
Annealing promoted Denaturing promoted

by heating solution

5’

3’

3’

5’

Fig. 1.6. DNA melting and annealing

In double-stranded DNA, if one of the single strands contains a discontinuity
(i.e., one nucleotide is not bonded to its neighbor) then this may be repaired by
DNA ligase [37]. This allows us to create a unified strand from several strands
bound together by their respective complements. For example, Fig. 1.7a de-
picts three different single strands that many anneal, with a discontinuity
where the two shorter strands meet. This may be repaired by the DNA ligase
(Fig. 1.7b), forming a unified double-stranded complex (Fig. 1.7c).

Separation of strands

Separation is a fundamental operation, and involves the extraction from a
test tube of any single strands containing a specific short sequence (e.g.,
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(c)

(a)

(b)

C-C-T-A-T-C3’ 5’

G-A-C-C-A-T

G-G-A-T-A-G-C-T-G-G-T-A

C-C-T-A-T-C-G-A-C-C-A-T

5’

3’

3’

5’

5’ 3’G-G-A-T-A-G-C-T-G-G-T-A

3’ 5’

5’

3’

3’

5’C-C-T-A-T-C G-A-C-C-A-T

G-G-A-T-A-G-C-T-G-G-T-A

Fig. 1.7. (a) Three distinct strands. (b) Ligase repairs discontinuity. (c) The re-
sulting complex

extract all strands containing the sequence GCTA). If we want to extract
single strands containing the sequence x, we may first create many copies
of its complement, x. We attach to these oligos biotin molecules,3 which in
turn bind to a fixed matrix. If we pour the contents of the test tube over
this matrix, strands containing x will anneal to the anchored complementary
strands. Washing the matrix removes all strands that did not anneal, leaving
only strands containing x. These may then be removed from the matrix.

Another removal technique involves the use of magnetic bead separation.
Using this method, we again create the complementary oligos, but this time
attach to them tiny magnetic beads. When the complementary oligos anneal
to the target strands (Figure 1.8a), we may use a magnet to pull the beads
out of the solution with the target strands attached to them (Fig. 1.8b).

(b)

(a) Addition of oligo with
attached magnetic bead

GCTA

GCTA

CGAT

CGAT

Fig. 1.8. Magnetic bead separation

3 This process is referred to as “biotinylation”.
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Gel electrophoresis

Gel electrophoresis is an important technique for sorting DNA strands by size
[37]. Electrophoresis is the movement of charged molecules in an electric field.
Since DNA molecules carry a negative charge, when placed in an electric field
they tend to migrate toward the positive pole. The rate of migration of a
molecule in an aqueous solution depends on its shape and electric charge.
Since DNA molecules have the same charge per unit length, they all migrate
at the same speed in an aqueous solution. However, if electrophoresis is carried
out in a gel (usually made of agarose, polyacrylamide, or a combination of
the two), the migration rate of a molecule is also affected by its size.4 This
is due to the fact that the gel is a dense network of pores through which the
molecules must travel. Smaller molecules therefore migrate faster through the
gel, thus sorting them according to size.

A simplified representation of gel electrophoresis is depicted in Fig. 1.9.
The DNA is placed in a well cut out of the gel, and a charge applied.

Electrophorese

Electrostatic gradient

Gel

BufferDNA DNA separates into bands
Smallest

Fig. 1.9. Gel electrophoresis process

Once the gel has been run (usually overnight), it is necessary to visualize
the results. This is achieved by staining the DNA with the fluorescent dye
ethidium bromide and then viewing the gel under ultraviolet light. At this
stage the gel is usually photographed.

One such photograph is depicted in Fig. 1.10. Gels are interpreted as fol-
lows; each lane (1–7 in our example) corresponds to one particular sample
of DNA (we use the term tube in our abstract model). We can therefore run
several tubes on the same gel for the purposes of comparison. Lane 7 is known
as the marker lane; this contains various DNA fragments of known length, for
the purpose of calibration. DNA fragments of the same length cluster to form
visible horizontal bands, the longest fragments forming bands at the top of
the picture, and the shortest ones at the bottom. The brightness of a particu-
lar band depends on the amount of DNA of the corresponding length present
in the sample. Larger concentrations of DNA absorb more dye, and therefore

4 Migration rate of a strand is inversely proportional to the logarithm of its molec-
ular weight [114].
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appear brighter. One advantage of this technique is its sensitivity – as little
as 0.05 µg of DNA in one band can be detected as visible fluorescence.

Fig. 1.10. Gel electrophoresis photograph

The size of fragments at various bands is shown to the right of the marker
lane, and is measured in base pairs (b.p.). In our example, the largest band
resolvable by the gel is 2,036 b.p. long, and the shortest one is 134 b.p. long.
Moving right to left (tracks 6–1) is a series of PCR reactions which were set up
with progressively diluted target DNA (134 b.p.) to establish the sensitivity of
a reaction. The dilution of each tube is evident from the fading of the bands,
which eventually disappear in lane 1.

Primer extension and PCR

The DNA polymerases perform several functions, including the repair and
duplication of DNA. Given a short primer oligo, p in the presence of nucleotide
triphosphates (i.e., “spare” nucleotides), the polymerase extends p if and only
if p is bound to a longer template oligo, t. For example, in Fig. 1.11a, p is
the oligo TCA which is bound to t, ATAGAGTT . In the presence of the
polymerase, p is extended by a complementary strand of bases from the 5’
end to the 3’ end of t (Figure 1.11b).

Another useful method of manipulating DNA is the Polymerase Chain Re-
action, or PCR [111, 112]. PCR is a process that quickly amplifies the amount
of DNA in a given solution. Each cycle of the reaction doubles the quantity
of each strand, giving an exponential growth in the number of strands.

PCR employs polymerase to make copies of a specific region (or target se-
quence) of DNA that lies between two known sequences. Note that this target
sequence (which may be up to around 3,000 b.p. long) can be unknown ahead
of time. In order to amplify template DNA with known regions (perhaps at
either end of the strands), we first design forward and backward primers (i.e.
primers that go from 5’ to 3’ on each strand. We then add a large excess (rela-
tive to the amount of DNA being replicated) of primer to the solution and heat
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  A T   A  G  A   G  T  T  3’

T C3’

5’

5’

(b)

 A

T C T C3’ 5’ A T  A

5’  A T   A  G  A   G  T  T  3’

(a)

Fig. 1.11. (a) Primer anneals to longer template. (b) Polymerase extends primer
in the 5’ to 3’ direction

it to denature the double-stranded template (Fig. 1.12a). Cooling the solution
then allows the primers to anneal to their target sequences (Fig. 1.12b). We
then add the polymerase. In this case, we use Taq polymerase derived from the
thermophilic bacterium Thermus aquaticus, which lives in hot springs. This
means that they have polymerases that work best at high temperatures, and
that are stable even near boiling point (Taq is reasonably stable at 94 degrees
Celsius). The implication of this stability is that the polymerase need only be
added once, at the beginning of the process, as it remains active throughout.
This facilitates the easy automation of the PCR process, where the ingredients
are placed in a piece of apparatus known as a thermal cycler, and no further
human intervention is required.

3’ 5’

5’ 3’

3’ 5’

5’ 3’

3’ 5’

3’ 5’

5’ 3’

3’ 5’

5’ 3’

3’ 5’

5’ 3’

(a)

(b)

5’ 3’

(c)

(d)

Fig. 1.12. (a) Denaturing. (b) Primer annealing. (c) Primer extension. (d) End
result
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The polymerase then extends the primers, forming an identical copy of
the template DNA (Fig. 1.12c). If we start with a single template, then of
course we now have two copies (Fig. 1.12d). If we then repeat the cycle of
heating, annealing, and polymerising, it is clear that this approach yields an
exponential number of copies of the template. A typical number of cycles
would be perhaps 35, yielding (assuming a single template) around 68 billion
copies of the target sequence (for example, a gene).

Unfortunately, the incredible sensitivity of PCR means that traces of un-
wanted DNA may also be amplified along with the template. We discuss this
problem in a following chapter.

Restriction enzymes

Restriction endonucleases [160, page 33] (often referred to as restriction en-
zymes) recognize a specific sequence of DNA known as a restriction site. Any
DNA that contains the restriction site within its sequence is cut by the enzyme
at that point.5

� �
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� �
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� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
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(a)

(b)

(c)

5’

3’

3’

5’

G-G-A-T- T-A-C-G-G-T-A

C-C-T-A-C-A-T-G-C-C-A-T

G-

5’

3’

3’

5’

G-G-A-T- T A-C-G-G-T-A

C-C-T-A-C-A T-G-C-C-A-T

G-

5’

3’

G-G-A-T- T

C-C-T-A- A

3’

5’

A-C-G-G-T-A

T-G-C-C-A-T

G-

C-

Fig. 1.13. (a) Double-stranded DNA. (b) DNA being cut by RsaAI. (c) The re-
sulting blunt ends

For example, the double-stranded DNA in Fig. 1.13a is cut by restriction en-
zyme RsaI, which recognizes the restriction site GTAC. The enzyme breaks
(or “cleaves”) the DNA in the middle of the restriction site (Fig. 1.13b). The
exact nature of the break produced by a restriction enzyme is of great im-
portance. Some enzymes like RsaI leave “blunt” ended DNA (Fig. 1.13c).

5 In reality, only certain enzymes cut specifically at the restriction site, but we take
this factor into account when selecting an enzyme.
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Others may leave “sticky” ends. For example, the double-stranded DNA in
Fig. 1.14a is cut by restriction enzyme Sau3AI, which recognizes the restric-
tion site GATC (Fig. 1.14b). The resulting sticky ends are so-called because
they are then free to anneal to their complement.

(a)

(b)

(c)

5’

3’

3’

5’

G-G-A-T-G-A-T-C-G-G-T-A

C-C-T-A-C-T-A-G-C-C-A-T

5’

3’

3’

5’

G-G-A-T G-A-T-C-G-G-T-A

C-C-T-A-C-T-A-G C-C-A-T

5’ G-G-A-T

3’ C-C-T-A-C-T-A-G
5’C-C-A-T

3’G-A-T-C-G-G-T-A

Fig. 1.14. (a) Double-stranded DNA being cut by Sau3AI. (b) The resulting sticky
ends

Cloning

Once the structure of the DNA molecule was elucidated and the processes
of transcription and translation were understood, molecular biologists were
frustrated by the lack of suitable experimental techniques that would facili-
tate more detailed examination of the genetic material. However, in the early
1970s, several techniques were developed that allowed previously impossible
experiments to be carried out (see [36, 114]). These techniques quickly led to
the first ever successful cloning experiments [81, 102].

Cloning is generally defined as “... the production of multiple identical
copies of a single gene, cell, virus, or organism.” [130]. In the context of
molecular computation, cloning therefore allows us to obtain multiple copies
of specific strands of DNA. This is achieved as follows:

The specific sequence is inserted in a circular DNA molecule, known as a
vector, producing a recombinant DNA molecule. This is performed by cleaving
both the double-stranded vector DNA and the target strand with the same
restriction enzyme(s). Since the vector is double stranded, restriction with
suitable enzymes produces two short single-stranded regions at either end
of the molecule (referred to as “sticky” ends. The same also applies to the
target strand. The insertion process is depicted in Fig. 1.16. The vector and
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Protein coatDNA molecule

Fig. 1.15. Schematic representation of the M13 phage structure

target are both subjected to restriction; then, a population of target strands is
introduced to the solution containing the vector. The sticky ends of the target
bind with the sticky ends of the vector, integrating the target into the vector.
After ligation, new double-stranded molecules are present, each containing the
new target sequence.

In what follows, we use the M13 bacteriophage as the cloning vector. Specif-
ically, we use the M13mp18 vector, which is a 7,249 b.p. long derivative of
M13 constructed by Yanisch-Perron et al. [164].

Bacteriophages (or phages, as they are commonly known) are viruses that
infect bacteria. The structure of a phage is very simple, usually consisting of
a single-stranded DNA molecule surrounded by a sheath of protein molecules
(the capsid) (Fig. 1.15).

The vector acts as a vehicle, transporting the sequence into a host cell
(usually a bacterium, such as E.coli). In order for this to occur, the bacteria
must be made competent. Since the vectors are relatively heavy molecules, they
cannot be introduced into a bacterial cell easily. However, subjecting E.coli to
a variety of hot and cold “shocks” (in the presence of calcium, among other
chemicals) allows the vector molecules to move through the cell membrane.
The process of introducing exogenous DNA into cells is referred to as trans-
formation. One problem with transformation is that it is a rather inefficient
process; the best we can hope for is that around 5% of the bacterial cells will
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Strand to be inserted (target DNA)

Restriction
Vector

New molecules containing target sequence

Ligation

Fig. 1.16. Insertion of target strand into vector DNA

take up the vector. In order to improve this situation, we may use a technique
known as electroporation. A high voltage pulse is passed through the solution
containing the vectors and bacteria, causing the cell membranes to become
permeable. This increases the probability of vector uptake. The vector then
multiplies within the cell, producing numerous copies of itself (including the
inserted sequence).

The infection cycle of M13 proceeds as follows. The phage attaches to a
pilus (an appendage on the surface of the cell) and injects its DNA into the
bacterium (Fig. 1.17a). The M13 DNA is not integrated into the DNA of the
bacterium, but is still replicated within the cell. In addition, new phages are
continually assembled within and released from the cell (Fig. 1.17b), which go
on to infect other bacteria (Fig. 1.17c). When sufficient copies of the specific
sequence have been made, the single-stranded M13 DNA may be retrieved
from the medium. The process by which this is achieved is depicted in Fig. 1.18
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M13 molecules

M13 DNA
Pilus

M13 phage

M13 DNA molecules

(a)

(b)

(c)

Bacterium

Fig. 1.17. M13 phage infection cycle
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(b) Centrifuge to
remove cells

(a) Culture of infected cells (c) Add PEG to phage suspension
then centrifuge

(d) Resuspend phage 
in buffer

(e) Add phenol to
remove protein sheath

(g) Resuspend M13

DNA in small volume
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M13 phage
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M13 DNA

Protein
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(f) Remove acqueous
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Fig. 1.18. Preparation of M13 DNA from infected culture of bacteria

(see also [104]). Once a sufficient volume of infected culture has been obtained
we centrifuge it to pellet the bacteria (i.e., separate the bacteria from the
phage particles). We then precipitate the phage particles with polyethylene
glycol (PEG), add phenol to strip off the protein coats and then precipitate
the resulting DNA using ethanol.
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1.5 Summary

We described here the basic structure of DNA and the methods by which
it may be manipulated in the laboratory. These techniques owe their origin
to, and are being constantly improved by, the wide interests of molecular
biologists working in modern areas such as the Human Genome project and
genetic engineering. In Chap. 5 we show how these techniques allow us to
implement a computation. Although other molecules (such as proteins) may
be used as a computational substrate in the future, the benefit of using DNA
is that this wide range of manipulation techniques is already available for use.

1.6 Bibliographical Notes

A definitive review of molecular genetics was co-authored by James Watson,
one of the discoverers of the structure of DNA [156]. For in-depth information
on molecular biology techniques, [18] is a laboratory manual that presents
shortened versions of some 220 protocols selected from Current Protocols in
Molecular Biology, the standard source in the field. For further details of the
cloning process, the reader is directed to [136].
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Theoretical Computer Science: A Primer

“Man is a slow, sloppy, and brilliant thinker; the machine is fast,
accurate and stupid.” – William M. Kelly

2.1 Introduction

A computer is a machine that manipulates information. The study of com-
puter science is concerned with how this information is organized, manipu-
lated, and used. However, what do we mean by information?

The basic unit of information is the bit, which can take one of two mutu-
ally exclusive values (for example, “true” or “false”, or “on” or “off”). The
fundamental components of digital computers use signals that are either “on”
or “off.” The details of computer architecture are beyond the scope of this
book, but the interested reader is referred to [149].

Numbers are represented within computers using the binary number sys-
tem. Within this system, the two symbols 0 and 1 are sufficient to represent
any number (within the storage limits of the computer, obviously). Any inte-
ger value that is not a power of 2 can be expressed as the sum of two or more
powers of 2. Each binary digit in a number is twice as significant as the digit to
its right, and half as significant as the digit on its left. So, for example, the bi-
nary number 1011 corresponds to (1×23)+(0×22)+(1×21)+(1×20) = 11.
In order to convert a decimal number to binary, we continually divide the
number by two until the quotient is zero. The remainders, in reverse order,
give the binary representation of the number.

The fundamental computational components introduced earlier are gen-
erally known as gates. These gates may be thought of as “black boxes” that
take in signals and yield an output. This is known as computing a function.
The three gates that we will initially consider are called NOT, AND, and OR.
The conventional symbols used to depict these gates are depicted in Fig. 2.1,
along with their functional behavior.
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Fig. 2.1. NOT, AND and OR gates

Let us first look at the simplest of the three, the NOT gate. This gate takes a
single input, X . If X = 0, then the output, Z, of the NOT gate is 1. Conversely,
if X = 1 then Z = 0. Clearly, this gate “flips” its input, from 1 to 0 and vice
versa. X and Z are both examples of variables, as their values may change.

The AND gate is more complex. Note that it outputs 1 if and only if both
its inputs are equal to 1, and outputs 0 for all other input cases. This may be
used, for example, in a situation where we wanted to say something like “if
the washing machine has been turned off and the drum has stopped spinning
then open the door.” We could model this system with a single AND gate,
where X is 1 only if the machine has been turned off, Y is 1 only if the drum
has stopped spinning, and Z having the value 1 means that the door may be
opened.

Now let us consider the OR gate. This outputs 1 if any of its inputs are
equal to 1, and 0 otherwise. For example, we may want to express the following:
“if it’s raining or the trains are late, then drive to work.” The OR gate could
model this, where X is 1 only if it’s raining, Y is 1 only if the trains are late,
and Z is 1 if the decision is to drive to work. In this situation, if either X or
Y is 1 then Z = 1.

Of course, these gates do not usually work in isolation. We may combine
these gates into circuits to model more complex situations. In order to describe
these circuits we need a new type of algebra, in which variables and functions
can take only the values 0 and 1. This algebra is called a Boolean algebra,
after its discoverer, George Boole.
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Boolean algebra

A Boolean function has one or more input variables and yields a result that
depends only on the values of those variables. One function may be defined
by saying that f(X) is 1 if X is 0, and F (X) is 0 if X is 1. This is obviously
the NOT function described above.

Because each Boolean function of n variables has only 2n possible combi-
nations of input values, we can describe the function completely by listing a
table of 2n rows, each specifying a unique set of input values with the corre-
sponding value for the function. Such tables are known as truth tables, and
the tables of Fig. 2.1 are examples of these.

We may combine gates to form circuits to evaluate more complicated func-
tions. For example, we may want to say “if the car ignition is on and the
seatbelt is not fastened then sound the buzzer.” The circuit to implement this
function is depicted in Fig. 2.2.

Z

X

Y

X Y Z

0 0 0

0 1 0

1 0 1

1 1 0

Fig. 2.2. Example circuit

Here, X represents the state of the ignition, and Y the state of the seatbelt.
The buzzer sounds (Z = 1) only if X is 1 (i.e., the ignition is on) and Y is 0
(i.e., not 1, or the seatbelt is not on).

Boolean logic circuits implement computations by taking in inputs, apply-
ing some function, and producing an output. We now examine the nature of
computation in more detail.

2.2 Algorithms and Automata

An algorithm is a mathematical procedure for performing a computation. To
phrase it another way, an algorithm is “a computable set of steps to achieve a
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desired result.” As an aside, we note that the term is derived from the name
of the Persian author Abu Ja’far Mohammed ibn Mûsâ al-Khowârizmı̂ who
wrote a book detailing arithmetic rules in around 825 A.D. An algorithm is
abstract; it is not a program (rather, a program is an implementation of an
algorithm).

Algorithms are executed in a “mechanical” fashion (just as a computer
mechanically executes a program). The mechanistic nature of algorithms al-
lows us to introduce the abstract concept of a computing machine. Computing
machines essentially take in some input and compute some output. Because
of their abstract nature, we ignore “real-world” limitations imposed by, for
example, memory size or communication delays.

A typical problem that we may pose a computing machine is to sort a
list of integers into ascending order. Thus, the input to the machine is a list
of integers (separated by spaces), and the output is also a list of integers.
The problem is to compute a function that maps each input list onto its
numerically ordered equivalent. Other problems involve data structures more
complicated than simple lists, and we shall encounter these later.

The simplest computing machine is the finite-state automaton. We consider
the deterministic finite-state automaton (DFA). The DFA simply reads in
strings and outputs “accept” or “reject.” This machine has a set of states,
a start state, an input alphabet, and a set of transitions. One or more of the
states are nominated as accepting states. The machine begins in the start
state and reads the input string one character at a time, changing to new
states determined by the transitions. When all characters have been read, the
machine will either be in an accepting state or a rejecting state.

An example DFA is depicted in Fig. 2.3. This DFA has an alphabet of (a,b)
and two states, 1 (the start state) and 2 (the only accepting state, denoted
by the double circle). The transitions are denoted by the labels attached to
the arrowed lines. For example, if the machine is in state 2 and it reads the
character “b”, the only available transition forces it into state 1.

a

 b

b

a

1 2

Fig. 2.3. Example depiction of a DFA
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So, this DFA accepts strings containing only the characters “a” and “b”,
and accepts a string if and only if it contains an odd number of “b”s. Consider
the following examples;

Example 1: Input string “abba”. Start in state 1 and read “a”. Stay in
state 1. Read “b”, move to state 2. Read “b”, move to state 1. Read “a”, stay
in state 1. As the input is now exhausted, we check the current state and find
that the machine rejects the input, as it has an even number of “b”s.

Example 2: Input string “babb”. Start in state 1 and read “b”. Move to
state 2. Read “a”, stay in state 2. Read “b”, move to state 1. Read “b”, move
to state 2. As the input is now exhausted, we check the current state and find
that the machine accepts the input, as it has an odd number of “b”s.

Rather than depicting state transition rules with a diagram, we can present
them in the form of a table (Table 2.1).

Table 2.1. Rules for DFA

State Symbol New state

1 a 1

1 b 2

2 a 2

2 b 1

Although fundamental to the theory of computer science, finite-state au-
tomata are limited because, as their name suggests, they are of fixed size.
This severely limits their functionality. We could not, for example, solve the
sorting problem above for lists of arbitrary size using a fixed finite-state au-
tomaton. We require an “infinite” machine that is capable of solving problems
of arbitrary size. The first such machine was the Turing Machine.

2.3 The Turing Machine

The Turing Machine (TM) was introduced by Alan Turing in 1936 [150].
This is, essentially, a finite automaton as described above, augmented with an
unbounded external storage capacity. More specifically, the TM consists of a
finite automaton controller, a read-write head, and an unbounded sequential
tape memory. This tape memory is linear and consists of cells, each of which
can contain one symbol (or be blank) (Fig. 2.4).

Depending on the current state of the machine and the symbol currently
being read from the tape, the machine can change its state, write a symbol
(or blank) to the tape, and move the head left or right. When the machine
has no rule for a combination of state and symbol it halts.

The following example illustrates the operation of the TM. This machine
has five states, the initial state being 1. The program (or set of rules) is
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State

Read/write head

Tape

1 0 1 1 0 1 1 1 0

Program

100R2
200R3

2

Fig. 2.4. Turing Machine

denoted in Table 2.2. The finite automaton controller may be thought of as a
program, consisting of transition rules of the form “in state n, if the head is
reading symbol x, write symbol y to the tape, move left or right one cell on
the tape, and change to state m.”

The table could be expressed by writing each row as a statement, substi-
tuting “L” for “Left”, “R” for “Right”, and “B” for “Blank.” This gives the
following TM program:

(1, 0, 0, R, 2)
(2, 0, 0, R, 3)
(2, 1, 1, R, 2)
(3, 0, B, L, 5)
(4, 0, 1, R, 2)

Table 2.2. Example Turing Machine program

State Symbol Write Move New state

1 0 0 Right 2

2 0 0 Right 3

2 1 1 Right 2

3 0 Blank Left 5

3 1 0 Left 4

4 0 1 Right 2

The TM starts with its read-write head on the left-most cell. The input string
is supplied on the tape, the first character of it occupying the left-most cell.
The TM then repeatedly applies the supplied transition rules (or “runs” the
program).
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The example program given above implements unary addition. The input
represents two numbers to be added, expressed in unary notation. To represent
two integers {j, k} as an input string we start with a marker “0”, followed by
j “1”s, followed by a separator “0”, and then k “1”s terminated by a final
“0.” So, to add 2 and 3 we would specify an input string on 01101110.

Running the program specified in Table 2.2 on the input string 01101110
involves the steps described in Table 2.3. Note that the position of the read-
write head on the tape is denoted by an arrow.

Table 2.3. Run of TM program

Tape State Action

0̌1101110 1 Write 0, go to state 2

01̌101110 2 Scan over 1

011̌01110 2 Scan over 1

0110̌1110 2 End of first number, go to next

01101̌110 3 Change 1 to 0, go back

0111̌0110 4 Copy 1, return to second number

011110̌10 2 End of first number, go to next

0111101̌0 3 Change 1 to 0, go back

011110̌10 4 Copy 1, return to second number

01111100̌ 3 No second number, erase trailing 0

0111110̌ 5 Halt

It is clear that, after the TM halts, the tape represents the correct sum rep-
resented in unary notation.

2.4 The Random Access Machine

Any function (problem) that can be computed by any other machine can also
be computed by a Turing Machine. This thesis was established by Alonzo
Church (see [145]). This means that Turing Machines are universal in the
sense of computation. Note that this does not necessarily mean that any
function can be computed by a Turing Machine – there exist uncomputable
functions. The most famous uncomputable problem is the Halting Problem:
given a Turing Machine with a given input, will it halt in a finite number
number of steps or not? This can be re-phrased in the following fashion: is it
possible to write a program to determine whether any arbitrary program will
halt? The answer is no.

So, we can see that the Turing Machine is useful for investigating funda-
mental issues of computability. However, the ease of its application in other
domains is less clear. Writing a program for a Turing Machine is a very “low-
level” activity that yields an awkward and non-intuitive result. TMs also differ
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from “traditional” computers in several important ways, the most important
concerning memory access. Recall the run-through of the example TM pro-
gram, given in Table 2.3. In order to reach the end of the first number on
the tape, the TM was forced to scan linearly along the tape until it reached
the middle marker. In more general terms, in order to reach a distant tape
(memory) cell, the TM must first read all of the intermediate cells.

This problem may be overcome by the introduction of the Random Access
Machine (RAM) [5]. This machine is capable of reading an arbitrary memory
cell in a single step. Like the TM, the RAM is also abstract in the sense that
it has unbounded memory and can store arbitrarily large integers in each cell.

The structure of the RAM is depicted in Fig. 2.5. The main components
of the machine are the read-only input tape, a write-only output tape, a fixed
program, and a memory. The input and output tapes are identical in structure
to the TM tape. When a symbol is read from the input tape, the read head
is moved one cell to the right. When a symbol is written to the output tape,
the write head is moved one cell to the right.

The RAM program is fixed, and is stored separately from the memory.
The first memory location, M[0] is reserved for the accumulator, where all
computation takes place.

Input tape

Output tape

Memory

Accumulator

ProgramPC

M[0]

M[1]

M[2]

Fig. 2.5. Random Access Machine

In order to describe algorithms, we define an instruction set and a program.
The instruction set defines the range of operations available to the RAM. The
exact nature of the operations chosen is not important, and different authors
specify different instruction sets. However, the set of instructions usually re-
semble those found in real computers. The program is simply a sequence of
instructions, any of which may be labelled. The program counter (PC) keeps
track of the current execution point in the program.

An example instruction set is given in Table 2.4. Instructions are of the
form < operation >< operand >. An operand can be:
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1. = i, indicating the integer i,
2. A nonnegative integer i, indicating the contents of memory location M[i],

or
3. ∗i, indicating the contents of M[j], where j is the integer found in M[i];

This is known as indirect addressing.

Note that the x ← y notation is interpreted as “x takes the value of y.” For
example, ACC ← M[a] means “copy the contents of memory location M[a]
into the accumulator.” After [5], we define value(a), the value of an operand
a, as follows:

1. value(= i)=i,
2. value(i) = M[i],
3. value(∗i) = M[M[i]].

Table 2.4. Example RAM instruction set

Instruction Meaning

LOAD a ACC ← value(a)

STORE i M[i] ← ACC

STORE ∗i M[M[i]] ← ACC

ADD a ACC ← ACC + value(a)

SUB a ACC ← ACC-value(a)

MULT a ACC ← ACC×value(a)

DIV a ACC ← ACC÷value(a)

READ i M[i] ← current input symbol

READ ∗i M[M[i]] ← current input symbol

WRITE a Print value(a) onto output tape

JUMP l Set PC to the instruction labeled l

JGTZ l If ACC >0, PC ← instruction labeled l, else PC ← next instruction

JZERO l If ACC = 0, PC ← instruction labeled l, else PC ← next instruction

HALT End execution

It should be clear that programs written using this instruction set are rather
easier to understand than those written for a Turing Machine. Nontheless, for
the purposes of algorithmic description we may abstract even further away
from the machine level by introducing pseudo-code. Pseudo-code expresses
the mechanisms underlying a program without necessarily tying that expres-
sion to any one particular machine or programming language. Pseudo-code
shows program flow by using constructs such as “if some condition is true,
then do procedure 1, else do procedure 2”, “while some condition is true, do
something”, and “do something n times.” These constructs are very common,
and are found in the majority of programming languages.

We now give an example for the purposes of illustration. Consider the
function f(n), given by
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f(n) =

{
2n if n ≥ 1
0 otherwise

This function simply returns 2n if n is greater than or equal to 1, and 0
otherwise. The following pseudo-code program computes f(n):

read n
if n ≤ 0 then write 0

else
begin

power ← 1
while n > 0 do

begin
power ← power × 2
n ← n − 1

end
write power

end
end

The labels n, power, and counter are assigned to denote M[1], M[2], and M[3]
respectively (these are referred to as variables, as their value may change
during the execution of the program). Note that the program flow is depicted
using begin and end to denote program blocks, and that blocks at different
levels of control are indented differently.

We now give the corresponding RAM program in order to illustrate the
mapping with the pseudo-code.

READ 1 read n
LOAD 1 ↑
JGTZ numpos ‖ if n ≤ 0 then write 0
WRITE = 0 ↓
JUMP end

numpos: LOAD 1 ↑
STORE 2 ↓ power ← n
LOAD 1 ↑
SUB = 1 ‖ counter ← n-1
STORE 3 ↓

while: LOAD 3 ↑
JGTZ continue ‖ while counter > 0 do
JUMP endwhile ↓

continue: LOAD 2 ↑
MULT = 2 ‖ power ← power × 2
STORE 2 ↓
LOAD 3 ↑
SUB = 1 ‖ counter ← counter − 1
STORE 3 ↓
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JUMP while
endwhile: WRITE 2 write power
end: HALT

The description of the structure of the RAM and its instruction set consti-
tutes the machine model or model of computation. This is a formal, abstract
definition of a computer. Using a model of computation allows us to calcu-
late the resources (running time and memory space) required by algorithms,
without having to consider implementation issues. As we have seen, there are
many models of computation, each differing in computing power. In Chap.5
we consider models of computation using DNA.

2.5 Data Structures

So far, we have only considered very simple problems, such as computing
powers of integers. However, many “interesting” problems are concerned with
other mathematical constructs. The solution of a computational problem of-
ten involves the determination of some property (or properties) of a given
mathematical structure. Such structures include lists, networks, and trees.

These are examples of data structures. A data structure is a way of orga-
nizing information (usually, but not always, in computer memory) in a self-
contained and organized fashion. Data structures have algorithms associated
with them to access and maintain the information they contain. For example,
one of the simplest data structures is the array. Arrays are used when we need
to store and manipulate a collection of items of similar type that may have
different attributes. Consider a set of mailboxes, or “pigeon-holes.” Each is
identical (i.e., of the same type), but may have different contents (attributes).
In addition, each mailbox has a unique number, or address. These principles
hold just as well if, for example, we wish to store a list of integers for use
within an algorithm. Rather than declaring an individual variable for each
integer stored, we simply declare an array of integers that is large enough for
our purposes.

Consider an example: we wish to store the average annual rainfall in our
country (rounded up to the nearest centimeter) over a ten-year period. We
could declare a separate variable for each year to store the rainfall over that
period, but this would be unwieldy and inefficient. A much better solution is
to declare an array of ten integers, each storing one year’s rainfall. Thus, we
may declare an array called rainfall, addressing the elements as rainfall[0],
rainfall[1], ..., rainfall[9]. Note how the first element of an n-element array
always has address 0, and the last has the address n-1.

Arrays may be multi-dimensional, allowing us to represent more complex
information structures. For example, we may wish to write an algorithm to cal-
culate the driving distances between several towns. The first problem we face
is how to represent the information about the towns and the roads connecting
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them. One solution is the adjacency matrix, which is a two-dimensional array
of integers representing the distances between towns. An example is shown in
Fig. 2.6. Here, we have five towns connected by roads of a given length. We
declare a two-dimensional array distance[5][5] to store the distance between
any two towns.

Town 0

Town 1

Town 2

Town 3

Town 4

50

15

45

45

52

50

30

0 1 2 3 4

−1

−1

−1

−1

−1

50

50

15

15
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−1
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45

−1 52

52

0

1

2

3

4

Town

Town

Fig. 2.6. Example map and its corresponding adjacency matrix

The distance is then found by reading the contents of array element
distance[firsttown][secondtown]. Notice that for each town n, distance[n][n]
has the value -1, as it makes no sense for a town to have a distance to it-
self. Also, if there is no direct road connecting town x and town y, then
distance[x][y] also takes the value -1. The final thing to note about the adja-
cency matrix is that as the roads are two-way, the matrix is symmetrical in
the diagonal (i.e., distance[x][y] has the same value as distance[y][x]). Obvi-
ously, this is not the most efficient method of storing undirected graphs, but
it provides an easy illustration of the use of more complicated data structures.

Graphs

As we have seen, an example problem may be phrased thus: given a set of
towns connected by roads, what is the shortest path between town A and
town B? Another problem may ask if, given a map of mainland Europe, it
is possible to color each country red, green, or blue such that no adjacent
countries are colored the same.

The first example is referred to as an optimisation problem, as we are re-
quired to find a path that fits some criterion (i.e., it is the shortest possible
path). The second example is known as a decision problem, as we are answer-
ing a simple “‘yes/no” question about a structure. A large body of problems
is concerned with the mathematical structures known as graphs. In this con-
text, a graph is not a method of visualising data, rather a network of points
and lines. More formally, a graph, G = (V, E), is a set of points (vertices), V ,
connected by a set of lines (edges), E. Take the fragment of an English county
map depicted in Fig. 2.7.
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Fig. 2.7. Fragment of county map

The graph representing this map is depicted in Fig. 2.8, with vertices repre-
senting counties and edges representing borders.

Cornwall

Somerset Wiltshire

Hampshire

Berkshire

Dorset

Devon

Isle of Wight

Fig. 2.8. Graph representing county map

Vertices and edges may have labels attached to them (for example, a vertex
may be labelled with the name of a county, and an edge may be labelled with
the length of the border.) Vertices may be isolated (i.e., be unconnected to
any other vertex). For example, in Fig. 2.7, the Isle of Wight is an island, so
the vertex representing it is isolated. In addition, edges may be directed or
undirected. As their name suggests, the former have an implied direction (if,
for example, they represent one-way streets or flights between two airports),
while the latter have no particular direction attached to them.

Another graph is is presented in Fig. 2.9. As we denote a graph by
G = (V, E), where V is the vertex set and E the edge set, Fig. 2.9 repre-
sents the graph G = ({v0, v1, v2, v3, v4}, {e0, e1, e2, . . . , e7}). We denote the
number of vertices in a graph by n =|V | and the number of edges by |E|.
We can specify an edge in terms of the two edges it connects (these are
called its end-points. If the end-points of some edge e are vi and vj , then
we can write e = (vi, vj) (as well as e = (vj , vi) if e is undirected). So,
we can define the graph in Fig. 2.9 as G = (V, E), V = ({v0, v1, v2, v3, v4}),
E = ({(v0, v0), (v0, v1), (v1, v4), (v4, v1), (v1, v3), (v1, v2), (v2, v3), (v3, v4)}).
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Fig. 2.9. Another graph

The degree of a vertex is the number of edges incident with it. In Fig. 2.9, the
degree of vertex v1 is 5, and that of v2 is 2. Note several interesting properties
of this graph. The first is that it has a self-loop – an edge (u, v) where u = v
(i.e., e0). The second is that it contains parallel edges (i.e., e2 and e3). We will
normally only be concerned with simple graphs (i.e., those without self-loops
or parallel edges). A rather more interesting property of the graph is that it
contains a cycle – a path through the graph that starts and ends at the same
vertex. An example cycle on the graph depicted in Fig. 2.9 starts and ends at
v1 – e2 → e7 → e6 → e5.

We are often interested in certain other properties of graphs. For example,
we may want to ask the question “is there a path from u to v?”, “is there a path
containing each edge exactly once?”, or “is there a cycle that visits each vertex
exactly once?” Such questions concern the existence and/or construction of
paths having particular properties.

Consider a salesperson who wishes to visit several cities connected by rail
links. In order to save time and money, she would like to know if there exists
an itinerary that visits every city precisely once. We model this situation
by constructing a graph where vertices represent cities and edges the rail
links. The problem, known as the Hamiltonian Path Problem [67], is very
well-studied, and we will examine it in depth in subsequent chapters.

Another set of questions may try to categorize a graph. For example,
two vertices v and w are said to be connected if there is a path connecting
them. So a connected graph is one for which every pair of vertices has a path
connecting them. If we asked the question “Is this graph connected?” of the
graph depicted in Fig. 2.8, the answer would be “no”, while the answer for
the graph in Fig. 2.9 would be “yes”.

The question of connectivity is important when considering, for exam-
ple, telecommunications networks. These can be visualized as a graph, where
vertices represent communication “stations”, and edges represent the links be-
tween them. The removal of a vertex (and all edges incident to it) corresponds
to the situation where a station malfunctions. By removing vertices from a
graph and examining its subsequent connectivity, we can identify crucial sta-
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tions and perhaps redesign the network such that their removal does not lead
to the graph becoming disconnected (at the very least).

Another category of graphs is made up of those that can have their vertices
“colored” using one of three colors (say, red, green, and blue). These graphs
fall into the “3-vertex-colorable” category. Graphs that do and do not fall
into this category are depicted in Fig. 2.10. The problem is to decide whether
three colors are sufficient to achieve such a coloring for an arbitrary graph
[67]. If we consider a graph with n vertices, there are clearly 3n possible ways
of assigning colors to vertices, but only a fraction of them will encode proper
colorings.

(a) (b)

Fig. 2.10. (a) 3-colorable. (b) Non-3-colorable graph

In order to clarify this, consider Fig. 2.11a. All possible three-colorings of G
(a) are depicted graphically in (b), with all proper colorings framed. A proper
coloring is highlighted in (c), and an illegal coloring in (d) (note how v2 and
v3 are colored the same).

Coloring could be applied to a situation where, for example, a company
manufactures several chemicals, certain pairs of which could explode if brought
into close contact. The company wishes to partition its warehouse into sealed
compartments and store incompatible chemicals in different compartments.
Obviously, the company wishes to minimize the amount of building work re-
quired, and so needs to know the least number of compartments into which
the warehouse should be partitioned. We can construct a graph with vertices
representing chemicals, and edges between vertices representing incompati-
bilities. The answer to the question of how many partitions are required is
therefore equal to the smallest number of colors required to obtain a proper
(i.e., legal) coloring of the graph.

Other questions involve asking whether or not a graph contains a subgraph
with its own particular properties. For example, “Does it contain a cycle?”
The cycle shown in the example graph G depicted in Fig. 2.9 is considered a
subgraph of G, as we see in Fig. 2.12.
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Fig. 2.11. (a) Example graph G. (b) Three-colorings of G. (c) Proper coloring. (d)
Illegal coloring
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Fig. 2.12. (a) Example graph G. (b) Subgraph of G
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Another problem may be concerned with cliques. A clique is a set of ver-
tices in an undirected graph in which each vertex is connected to every other
vertex. Cliques are complete graphs on n vertices, where n is the number of
vertices in the clique. The maximum clique problem is concerned with finding
the largest clique in a graph.

For example, consider the graph depicted in Fig. 2.13. It contains a sub-
graph that is a clique of size 4.

Fig. 2.13. Graph containing a clique (shown in bold)

The problem of identifying “clusters” of related objects is often equivalent to
finding cliques in graphs. One “real world” application of this was developed
by the US Internal Revenue Service to detect organized tax fraud, where
groups of “phony” tax forms are submitted. A graph is constructed, where
vertices correspond to tax return forms and edges link any forms that look
similar. The existence of a large clique suggests large-scale organized fraud
[146].
As we can see, our problem is to either decide if a graph has certain properties
or construct from it a path or subgraph with certain properties. We show in
a later chapter how this may be achieved in the context of models of DNA
computation.

Another type of graph is the tree. These are connected, undirected, acyclic
graphs. This structure is accessed at the root vertex (usually drawn, perhaps
confusingly, at the top of any diagrammatic representation). Each vertex in a
tree is either a leaf node or an internal node (the terms vertex and node are
interchangeable). An internal node has one or more child nodes, and is called
the parent of the child node. An example tree is depicted in Fig. 2.14.

2.6 Computational Complexity

It should be clear that different algorithms require different resources. A pro-
gram to sort one hundred integers into ascending order will “obviously” run
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Parents

Child leaf nodes

Root

Fig. 2.14. An example tree

faster (on the same computer) than one used to calculate the first million
prime numbers. However, it is important be able to establish this fact with
certainty. The field of computational complexity is concerned with the re-
sources required by algorithms.

Complexity may be defined as “the intrinsic minimum amount of resources,
for instance, memory or time, needed to solve a problem or execute an algo-
rithm.” In practice, we generally consider time as the limiting factor (that is,
when discussing the relative complexity of algorithms, we consider the time
taken for them to achieve their task).

We measure the time complexity of an algorithm in terms of the number of
computational “steps” it takes. For example, consider the factoring algorithm
given in Sect. 2.4. We assume for the sake of argument than n > 0. Step 1
involves reading n. Step 2 is the conditional, checking if n ≤ 0. Step 3 assigns
the value 1 to the power variable. Then we enter a loop. This is the crucial
part of the analysis, as it involves the section of the algorithm where most
work is done. Step 4 checks the value of n. As long as n > 0, we execute two
assignment steps (to power and n). We then execute a final step to print out
the value of power. As counter has the value n − 1, this algorithm takes two
steps if n ≤ 0, and 5 + (n∗3) steps if n ≥ 0. Note that the constant 5 includes
the final “while” step.

However, consider the implementation of this algorithm on a computer.
The running time of the program, given a particular value of n, still depends
on two factors:

1. The computer on which the program is run. Supercomputers execute in-
structions far more rapidly than personal computers,

2. The conversion of the pseudo-code into machine language. Programs to
do this are called compilers, and some compilers generate more efficient
machine code than others. The number of machine instructions used to
implement a particular pseudo-code statement will vary from compiler to
compiler.

We cannot therefore make statements like “this program will take 0.52 seconds
to run for an input value of n = 1000”, unless we know the precise details of
the machine and the compiler. Even then, the fact that the machine may or
may not be carrying out other time-consuming tasks renders such predictions
meaningless. Nobody is interested in the time complexity of an algorithm
compiled in a particular way running on a particular machine in a particular



2.6 Computational Complexity 41

state. We therefore describe the running time of an algorithm using “big-oh”
notation, which allows us to hide constant factors, such as the average number
of machine instructions generated by a particular compiler and the average
time taken for a particular machine to execute an instruction. So, rather than
saying that the factoring algorithm takes 5 + (n ∗ 3) time, we strip out the
constants and say it takes O(n)1 time.

The importance of this method of measuring complexity lies in determining
whether of not an algorithm is suitable for a particular task. The fundamental
question is whether or not an algorithm will be too slow given a big enough
input, regardless of the efficiency of the implementation or the speed of the
machine on which it will run.

Consider two algorithms for sorting numbers. The first, quicksort [48, page
145] runs, on average, in time O(nlogn). The second, bubble sort [92], runs in
O(n2). To sort a million numbers, quicksort takes, on average, 6,000,000 steps,
while bubble sort takes 1,000,000,000,000. Consequently, quicksort running on
a home computer will beat bubble sort running on a supercomputer!

An unfortunate tendency among those unfamiliar with computational
complexity theory is to argue for “throwing” more computer power at a prob-
lem until it yields. Difficult problems can be cracked with a fast enough su-
percomputer, they reason. The only problems lie in waiting for technology to
catch up or finding the money to pay for the upgrade. Unfortunately, this is
far from the case.

Consider the problem of satisfiability (SAT) [48, page 996]. We formally
define SAT in the next chapter, but for now consider the following problem.
Given the circuit depicted in Fig. 2.15, is there a set of values for the variables
(inputs) x and y that result in the circuit’s output z having the value 1?

Y

X

Z

Fig. 2.15. Satisfiability circuit

1 Read “big-oh of n”, or “oh of n”.
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The function F computed by this circuit is (x OR y) AND (NOT x OR
NOT y). In formal notation, this is expressed as F = (x ∨ y) ∧ (x ∨ y). OR is
denoted by ∧, AND by ∧, and NOT by overlining the variable.

F is made up of two bracketed clauses, and the problem is to find values
for the variables so that both clauses have the value 1, giving a value of 1 for
F (observe that the values of the clauses are ANDed). This problem is known
as the “satisfiability” problem because making all the clauses true is viewed
as “satisfying” the clauses.

The most obvious method of solving this problem is to generate all possible
choices for the variable values. That is, construct the truth table for the circuit.
Table 2.5 shows a breakdown of the truth table for the circuit depicted in
Fig. 2.15.

Table 2.5. Truth table for satisfiability circuit

x y (x ∨ y) (x ∨ y) z

0 0 0 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

Clearly, by inspection, only the combinations “x = 0, y = 1” and “x = 1, y =
0” are valid solutions to the problem. The current best algorithm essentially
performs just this process of trying all possible 2n choices for n variables.
Therein lies the problem.

Consider a situation where the number of variables doubles to four. There
are therefore 24 = 16 combinations to check. Doubling the circuit size again
means checking 28 = 256 combinations. However, what if the function has
100 variables? The number of combinations to be checked is now a staggering
1,267,650,600,228,229,401,496,703,205,376!

This is what mathematicians refer to as a combinatorial explosion. This is
a situation where work (or space required) increases by a factor of two, three,
or more for each successive value of n.

Table 2.6 shows the time required by different algorithms with different
time complexities for different values of n. We assume the algorithms are run
by a machine capable of executing a million steps a second.

Clearly, algorithms requiring n (linear) or n2 (quadratic) time may be
feasible for relatively large problem instances, while algorithms requiring 2n

(exponential) time are clearly impractical for even small values of n.
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Table 2.6. Running times of different algorithms for different values of n

n O(n) O(n2) O(2n) O(nn)

1 0.000001 seconds 0.000001 seconds 0.000002 seconds 0.000001 seconds

5 0.000002 seconds 0.000025 seconds 0.000032 seconds 0.003125 seconds

10 0.00001 seconds 0.0001 seconds 0.001024 seconds 2.778 hours

50 0.00005 seconds 0.0025 seconds 35.7 years 2.87 × 1070 years

2.7 P and NP

We can therefore call an algorithm “fast” if the number of steps to solve a
problem of size n is (no more than) some polynomial involving n. We define
the complexity class P to mean the set of all problems (not algorithms) that
have polynomial-time solutions. Therefore, the problem of sorting numbers is
in P , since some solution (e.g., bubble sort) runs in O(n2) time, and n2 is a
polynomial.

By the late 1960s it became apparent that there were several seemingly
simple problems for which no fast algorithms could be found, despite the best
efforts of the algorithms community. In an attempt to classify this set of prob-
lems, Cook observed that in order for a problem to be solved in polynomial
time one should be able (at the very least) to verify a given correct solution in
polynomial time [47]. This observation holds because if we have a polynomial-
time algorithm for a problem and someone gives us a proposed solution, we can
always re-run the algorithm to obtain the correct solution and then compare
the two, in polynomial time.

This led to the creation of the complexity class NP containing decision
problems for which one can verify the solution in polynomial time. Cook also
showed that within NP lies a set of problems that are the hardest of them
all. If a polynomial-time algorithm exists for any one of these problems then
all NP problems can be solved in polynomial time. This fact is known as
Cook’s Theorem [47], and is one of the most profound results in theoretical
computer science. The class of those “hardest” problems in NP is known as
NP-complete problems, of which satisfiability is the archetype.

Soon after Cook’s paper, Karp [89] proved that several interesting prob-
lems could also be shown to be NP -complete. The list of NP -complete prob-
lems has grown considerably since, and the standard text may be found at
[63]. The list includes many problems of great theoretical and practical sig-
nificance, such as network design, scheduling, and data storage.

2.8 Summary

In this chapter we provided an introduction to the theory of computer science.
We described the fundamental “building blocks” of computers, logic gates,
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and showed how they may be pieced together to perform computations. We
then considered the nature of computation itself, and introduced the concept
of an algorithm. This motivated the study of machine models, or models of
computation. We introduced several such models (the finite-state automaton,
the Turing machine, and the Random Access Machine), and described their
features, strengths, and weaknesses. We then considered the implementation
of algorithms within these models, introducing the organization of information
into data structures. We examined a simple data structure, the array, before
considering a more complex structure, the graph. We then highlighted the
fact that different algorithms require different resources, introducing the key
concept of computational complexity. We described the importance of this
idea, and showed how to calculate the complexity of algorithms. This then
motivated a discussion of how to choose an algorithm for a particular problem.
We concluded with a description of complexity classes, and introduced the
NP-complete problems, for which no fast algorithms yet exist.

2.9 Bibliographical Notes

A standard textbook on computer architecture is [149], which includes a treat-
ment of Boolean algebra. Algorithms and complexity are introduced in [48]
(which also covers sorting networks, encountered in Chap. 5). Another classic
text on data structures and algorithms is [5]. For an excellent introduction to
the theory of graphs, see [67]. The controversial2 paper that first established
that any planar graph is four colorable is published as both a book [16] and a
paper [15]. Finally, a discussion of why some problems are inherently difficult
and a treatment of state-of-the art solution methods are given in [107].

2 Due to its reliance on computer-assisted proof.
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Models of Molecular Computation

“... there’s a statue inside every block of stone.” – George Orwell,
Coming up for Air

3.1 Introduction

The purpose of this chapter is to describe several examples of the various
models of molecular computation that have been proposed in the literature.
Note that we have used the term “molecular” rather than the more specific
“DNA”, as we wish to abstract away from the (perhaps) intended biological
substrate for each model, and concentrate on the computational features of
the machine model.

We may describe abstract models of computation without necessarily con-
sidering their implementation. In [64], for example, for the sake of emphasising
what is inherently parallelisable within problems, the authors disregard con-
straints of implementation. However, the operation sets within the models
described here are constrained by the availability of various molecular ma-
nipulation techniques. The implementation of abstract operations will largely
determine the success or failure of a model. Many of the models described in
this chapter use abstract operations common to the others, such as set union.
However, even though models may utilize similar operations (e.g., removal of
an element from a set), the chosen implementation method may differ from
model to model. Details may impact implementation in various ways:

1. The volume of DNA required (analogous to space in complexity theoretical
terms) to perform the computation may vary by exponential factors.

2. Each operation takes a certain amount of time to implement in the labora-
tory, and so the sequence of operations performed determines the overall
time complexity of the algorithm. Thus, the techniques chosen have a
direct bearing on the efficiency of a DNA-based algorithm. In addition,
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the time taken to construct the initial set of strings and read out the fi-
nal solution may be very time consuming, and must also be taken into
account.

3. Each laboratory technique has associated with it a nonzero error rate.
Some techniques are far more error-prone than others, so the choice of
laboratory techniques directly affects the probability of success of a DNA-
based algorithm.

We therefore focus on abstract models in this chapter, and consider their phys-
ical implementation in Chap. 5. The models fall into four natural categories:

• Filtering
• Splicing
• Constructive
• Membrane

3.2 Filtering Models

In all filtering models (motivated by Adleman [3] and contemporaneously
generalized by Lipton [98] and Amos et al. [94, 12]), a computation consists of
a sequence of operations on finite multi-sets of strings. Multi-sets are sets that
may contain more than one copy of the same element. It is normally the case
that a computation begins and terminates with a single multi-set. Within the
computation, by applying legal operations of a model, several multi-sets may
exist at the same time. We define operations on multi-sets shortly, but first
consider the nature of an initial set.

An initial multi-set consists of strings which are typically of length O(n)
where n is the problem size. As a subset, the initial multi-set should include
all possible solutions (each encoded by a string) to the problem to be solved.
The point here is that the superset, in any implementation of the model, is
supposed to be relatively easy to generate as a starting point for a compu-
tation. The computation then proceeds by filtering out strings which cannot
be a solution. For example, the computation may begin with a multi-set con-
taining strings representing all possible three-colorings of a graph, and then
proceed by removing those that encode illegal colorings.

To give another example, if the problem is to generate a permutation of
the integers 1, . . . , n, then the initial multi-set might include all strings of the
form p1i1p2i2 . . . pnin where each ik may be any of the integers in the range
[1, . . . , n] and pk encodes the information “position k.” Here, as will be typical
for many computations, the multi-set has cardinality which is exponential in
the problem size. For our example of finding a permutation, we should filter
out all strings in which the same integer appears in at least two locations pk.
Any of the remaining strings is then a legal solution to the problem.

We now describe the important features of the various filtering models.
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Unrestricted model

Adleman [3] provided the impetus for recent work through his experimental
solution to the Hamiltonian Path Problem. This solution, however, was not
expressed within a formal model of computation, and is therefore described
later in Chap. 5. In [98], Lipton considered Adleman’s specific model and
showed how it can encompass solutions to one other NP -complete problem.
Here we summarize the operations within Adleman’s subsequent unrestricted
model [4]. All operations are performed on sets of strings over some alphabet
α.

• separate(T, S). Given a set T and a substring S, create two new sets
+(T, S) and −(T, S), where +(T, S) is all strings in T containing S, and
−(T, S) is all strings in T not containing S.

• merge(T1, T2, . . . , Tn). Given set T1, T2, . . . , Tn, create ∪(T1, T2, . . . , Tn) =
T1 ∪ T2 ∪ . . . Tn.

• detect(T ). Given a set T , return true if T is nonempty, otherwise return
false.

For example, given α = {A, B, C}, the following algorithm returns true only
if the initial multi-set contains a string composed entirely of “A”s:

Input(T)
T ← −(T, B)
T ← −(T, C)
Output(detect(T ))

In [4] Adleman describes an algorithm for the 3-vertex-colorability problem.
Recall, from Chap. 2, that in order to obtain a proper coloring of a graph
G = (V, E) colors are assigned to the vertices in such a way that no two
adjacent vertices are similarly colored.

We now describe Adleman’s algorithm in detail. The initial set, T , con-
sists of strings of the form c1, c2, . . . , cn, where ci ∈ {ri, gi, bi} and n is |V |,
the number of vertices in G. Thus each string represents one possible (not
necessarily proper) coloring of the given graph. With reference to Fig. 2.11,
the coloring represented in (c) would be encoded by the string b0, g1, b2, r3,
and the coloring in (d) would be encoded by b0, g1, r2, r3.

We assume that all possible colorings are represented in T . The algorithm
proceeds as follows:

(1) read initial set T
(2) for each vertex do
(3) From T , create red tube containing strings encoding this

vertex red, and create blue/green tube containing
all other strings

(4) Create blue tube from blue/green tube,
and create red tube from remaining strings
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(5) for all vertices adjacent to this vertex do
(6) From red, remove strings encoding

adjacent vertex red
(7) From blue, remove strings encoding

adjacent vertex blue
(8) From green, remove strings encoding

adjacent vertex green
(9) end for
(10) Merge red, green and blue tubes to form new tube T
(11) end for
(12) Read what is left in T

Or more formally:

(1) Input(T)
(2) for i = 1 to n do begin
(3) Tr ← +(T, ri) and Tbg ← −(T, ri)
(4) Tb ← +(Tbg, bi) and Tg ← −(Tbg, bi)
(5) for all j such that < i, j >∈ E do begin
(6) Tr ← −(Tr, rj)
(7) Tg ← −(Tg, gj)
(8) Tb ← −(Tb, bj)
(9) end for
(10) T ← merge(Tr, Tg, Tb)
(11) end for
(12) Output(detect(T ))

At Step 1 we input all possible colorings of the graph. Then, for each vertex
vi ∈ V we perform the following steps: split T into three sets, Tr, Tg, Tb, where
Tr contains only strings containing ri, Tg contains only strings containing gi,
and Tb contains only strings containing bi (Steps 3–4). Then, for each edge
< i, j >∈ E, we remove from these sets any strings containing ci = cj (i.e.,
those strings encoding colorings where adjacent vertices i and j are colored
the same) (Steps 5–9). Then, these sets are merged, forming the new set T
(Step 10), and the algorithm proceeds to the next vertex (Step 11). After
the coloring constraints for each vertex have been satisfied, we perform a
detection (Step 12). If T is nonempty then any string in T encodes a proper
3-vertex-coloring of G.

Satisfiability model

Lipton [98] described a solution to another NP -complete problem, namely the
so-called satisfiability problem (SAT). SAT may be phrased as follows: given
a finite set V = {v1, v2, . . . , vn} of logical variables, we define a literal to be a
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variable, vi, or its complement, vi. If vi is true then vi is false, and vice-versa.
We define a clause, Cj , to be a set of literals {vj

1, v
j
2, . . . , v

j
l }. An instance, I,

of SAT consists of a set of clauses. The problem is to assign a Boolean value
to each variable in V such that at least one variable in each clause has the
value true. If this is the case we may say that I has been satisfied.

Although Lipton does not explicitly define his operation set in [98], his
solution may be phrased in terms of the operations described by Adleman
in [4]. Lipton employs the merge, separate, and detect operations described
above. The initial set T contains many strings, each encoding a single n-bit
sequence. All possible n-bit sequences are represented in T . The algorithm
proceeds as follows:

(1) Create initial set, T
(2) For each clause do begin
(3) For each literal vi do begin
(4) if vi = xj extract from T strings encoding vi = 1 else

extract from T strings encoding vi = 0
(5) End for
(6) Create new set T by merging extracted strings
(7) End for
(8) If T nonempty then I is satisfiable

The pseudo-code algorithm may be expressed more formally thus:

(1) Input(T)
(2) for a = 1 to |I| do begin
(3) for b = 1 to |Ca| do begin
(4) if va

b = xj then Tb ← +(T, va
b = 1)

else Tb ← +(T, va
b = 0)

(5) end for
(6) T ← merge(T1, T2, . . . , Tb)
(7) end for
(8) Output(detect(T ))

Step 1 generates all possible n-bit strings. Then, for each clause Ca =
{va

1 , va
2 , . . . , va

l } (Step 2) we perform the following steps. For each literal va
b

(Step 3) we operate as follows: if va
b computes the positive form then we ex-

tract from T all strings encoding 1 at position va
b , placing these strings in Tb;

if va
b computes the negative form we extract from T all strings encoding 0 at

position va
b , placing these strings in Tb (Step 4); after l iterations, we have

satisfied every variable in clause Ca; we then create a new set T from the
union of sets T1, T2, . . . , Tb (Step 6) and repeat these steps for clause Ca + 1
(Step 7). If any strings remain in T after all clauses have been operated upon,
then I is satisfiable (Step 8).
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Parallel filtering model

A detailed description of our parallel filtering model appears in [12]. This
model was the first to provide a formal framework for the easy description of
DNA algorithms for any problem in the complexity class NP . Lipton claims
some generalisation of Adleman’s style of computation in [98], but it is difficult
to see how algorithms for different problems may be elegantly and universally
expressed within his model. Lipton effectively uses the same operations as
Adleman, but does not explicitly describe the operation set. In addition, he
describes only one algorithm (3SAT), whereas in subsequent sections we show
how our model provides a natural description for any NP -complete problem
through many examples.

As stated earlier, within our model all computations start with the con-
struction of the initial set of strings. Here we define the basic legal operations
on sets within the model. Our choice is determined by what we know can
be effectively implemented by very precise and complete chemical reactions
within the DNA implementation. The operation set defined here provides the
power we claim for the model but, of course, it might be augmented by ad-
ditional operations in the future to allow greater conciseness of computation.
The main difference between the parallel filtering model and those previously
proposed lies in the implementation of the removal of strings. All other models
propose separation steps, where strings are conserved, and may be used later
in the computation. Within the parallel filtering model, however, strings that
are removed are discarded, and play no further part in the computation. This
model is the first exemplar of the so-called “mark and destroy” paradigm of
molecular computing.

• remove(U, {Si}). This operation removes from the set U , in parallel, any
string which contains at least one occurrence of any of the substrings Si.

• union({Ui}, U). This operation, in parallel, creates the set U which is the
set union of the sets Ui.

• copy(U, {Ui}). In parallel, this operation produces a number of copies, Ui,
of the set U .

• select(U). This operation selects an element of U at random; if U is the
empty set then empty is returned.

From the point of view of establishing the parallel time complexities of algo-
rithms within the model, these basic set operations will be assumed to take
constant time. However, this assumption is reevaluated in Chap. 4.

A first algorithm

We now provide our first algorithmic description within the model. The prob-
lem solved is that of generating the set of all permutations of the integers 1
to n. A permutation is a rearrangement of a set of elements, where none are
removed, added, or changed. The initial set and the filtering out of strings
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which are not permutations were essentially described earlier. Although not
NP -complete, the problem does of course have exponential input and output.

The algorithmic description below introduces a format that we utilize else-
where. The particular device of copying a set (as in copy(U, {U1, U2, . . . , Un}))
followed by parallel remove operations (as in remove(Ui, {pj = i, pki})) is a
very useful compound operation, as we shall later see in several algorithmic
descriptions. Indeed, it is precisely this use of parallel filtering that is at the
core of most algorithms within the model.

Problem: Permutations
Generate the set Pn of all permutations of the integers {1, 2, . . . , n}.

Solution:

• Input: The input set U consists of all strings of the form p1i1p2i2 . . . pnin
where, for all j, pj uniquely encodes “position j” and each ij is in
{1, 2, . . . , n}. Thus each string consists of n integers with (possibly) many
occurrences of the same integer.

• Algorithm

for j = 1 to n − 1 do
begin
copy(U, {U1, U2, . . . , Un})
for i = 1, 2, . . . , n and all k > j

in parallel do remove(Ui, {pj = i, pki})
union({U1, U2, . . . , Un}, U)
end

Pn ← U

• Complexity: O(n) parallel time.

After the jth iteration of the for loop, the computation ensures that in the
surviving strings the integer ij is not duplicated at positions k > j in the
string. The integer ij may be any in the set {1, 2, . . . , n} (which one it is
depends on which of the sets Ui the containing string survived). At the end of
the computation each of the surviving strings contains exactly one occurrence
of each integer in the set {1, 2, . . . , n} and so represents one of the possible
permutations. Given the specified input, it is easy to see that Pn will be the set
of all permutations of the first n natural numbers. As we shall see, production
of the set Pn can be a useful sub-procedure for other computations.

Algorithms for a selection of NP -complete problems

We now describe a number of algorithms for graph-theoretic NP -complete
problems (see [67], for example). Problems in the complexity class NP seem
to have a natural expression and ease of solution within the model. We describe
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linear-time solutions although, of course, there is frequently an implication of
an exponential number of processors available to execute any of the basic op-
erations in unit time.

The 3-vertex-colorability problem

Problem: Three coloring
Given a graph G = (V, E), find a 3-vertex-coloring if one exists, otherwise
return the value empty.

Solution:

• Input: The input set U consists of all strings of the form p1c1p2c2 . . . pncn

where n = |V | is the number of vertices in the graph. Here, for all i, pi

uniquely encodes “position i” and each ci is any one of the “colors” 1,
2, or 3. Each such string represents one possible assignment of colors to
the vertices of the graph in which, for each i, color ci is assigned to vertex i.

• Algorithm:

for j = 1 to n do
begin
copy(U, {U1, U2, U3})
for i = 1, 2 and 3, and all k such that (j, k) ∈ E

in parallel do remove(Ui, {pj = i, pki})
union({U1, U2, U3}, U)
end

select(U)

• Complexity: O(n) parallel time.

After the jth iteration of the for loop, the computation ensures that in the
remaining strings vertex j (although it may be colored 1, 2, or 3 depending on
which of the sets Ui it survived in) has no adjacent vertices that are similarly
colored. Thus, when the algorithm terminates, U only encodes legal colorings
if any exist. Indeed, every legal coloring will be represented in U .

The Hamiltonian path problem

A Hamiltonian path between any two vertices u, v of a graph is a path that
passes through every vertex in V − {u, v} precisely once [67].

Problem: Hamiltonian path
Given a graph G = (V, E) with n vertices, determine whether G contains a
Hamiltonian path.
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Fig. 3.1. 3-coloring algorithm flowchart

Solution:

• Input: The input set U is the set Pn of all permutations of the integers
from 1 to n as output from Problem: Permutations. An integer i at
position pk in such a permutation is interpreted as follows: the string rep-
resents a candidate solution to the problem in which vertex i is visited at
step k.

• Algorithm:

for 2 ≤ i ≤ n−1 and j, k such that (j, k) /∈ E
in parallel do remove (U, {jpik})

select(U)

• Complexity: Constant parallel time given Pn.
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In surviving strings there is an edge of the graph for each consecutive pair
of vertices in the string. Since the string is also a permutation of the vertex
set it must also be a Hamiltonian path. Of course, U will contain every legal
solution to the problem.

The subgraph isomorphism problem

Given two graphs G1 and G2 the following algorithm determines whether G2

is a subgraph of G1.

Problem: Subgraph isomorphism
Is G2 = (V2, E2) a subgraph of G1 = (V1, E1)? By {v1, v2, . . . , vs} we denote
the vertex set of G1; similarly the vertex set of G2 is {u1, u2, . . . , ut} where,
without loss of generality, we take t ≤ s.

Solution:

• Input: The input set U is the set Ps of permutations output from the
Permutations algorithm. For 1 ≤ j ≤ t an element p1i1p2i2 . . . psis of
Ps is interpreted as associating vertex pj ∈ {u1, u2, . . . , ut} with vertex
ij ∈ {v1, v2, . . . , vs}. The algorithm is designed to remove any element
which maps vertices in V1 to vertices in V2 in a way which does not reflect
the requirement that if (ps, pt) ∈ E1 then (is, it) ∈ E2.

• Algorithm:

for j = 1 to t − 1 do
begin
copy(U, {U1, U2, . . . , Ut})
for all l, j < l ≤ t such that (pj , pl) ∈ E2 and (ij, il) /∈ E1

in parallel do remove(Uj, {plil})
union({U1, U2, . . . , Ut}, U)
end

select(U)

• Complexity: O(|Vs|) parallel time.

For any remaining strings, the first t pairs plil represent a one-to-one associ-
ation of the vertices of G1, with the vertices of G2 indicating the subgraph of
G1 which is isomorphic to G2. If select(U) returns the value empty then G2

is not a subgraph of G1.
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The maximum clique problem
A clique Ki is the complete graph on i vertices [67]. The problem of finding
a maximum independent set is closely related to the maximum clique problem.

Problem: Maximum clique
Given a graph G = (V, E) determine the largest i such that Ki is a subgraph
of G. Here Ki is the complete graph on i vertices.

Solution:

• In parallel run the subgraph isomorphism algorithm for pairs of graphs
(G, Ki) for 2 ≤ i ≤ n. The largest value of i for which a nonempty result
is obtained solves the problem.

• Complexity: O(|V |) parallel time.

The above examples fully illustrate the way in which the NP -complete prob-
lems have a natural mode of expression within the model. The mode of solution
fully emulates the definition of membership of NP : that instances of problems
have candidate solutions that are polynomial-time verifiable and that there
are generally an exponential number of candidates.

Sticker model

We now introduce an alternative filtering-style model due to Roweis et al.
[133], named the sticker model. Within this model, operations are performed
on multisets of strings over the binary alphabet {0, 1}. Memory strands are
n characters in length, and contain k nonoverlapping substrings of length m.
Substrands are numbered contiguously, and there are no gaps between them
(Fig. 5.10a). Each substrand corresponds to a Boolean variable (or bit), so
within the model each substrand is either on or off. We use the terms bit and
substrand interchangeably

We now describe the operations available within the sticker model. They
are very similar in nature to those operations already described previously,
and we retain the same general notation. A tube is a multiset, its members
being memory strings.

• merge. Create the multiset union of two tubes.
• separate(N, i). Given a tube N and an integer i, create two new tubes

+(N, i) and −(N, i), where +(N, i) contains all strings in N with substrand
i set to on, and −(N, i) contains all strings in N with substrand i set to
off.

• set(N, i). Given a tube N and an integer i, produce a new tube set(N, i)
in which the ith substrand of every memory strand is turned on.

• clear(N, i). Given a tube N and an integer i, produce a new tube set(N, i)
in which the ith substrand of every memory strand is turned off.
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Fig. 3.2. (a) General memory strand scheme. (b) Complete (5,2) library

As in the models described previously, computations within the model consist
of sequences of operations taken from the available set. The final result is read
from the output tube by determining the contents of the memory strands it
contains; if the output tube is empty then this fact is reported.

The initial input to a computation consists of a library of memory strands.
A (k, l) library, where 1 ≤ l ≤ k, consists of memory strands with k sub-
strands, the first l of which may be on or off, and the last k − l of which are
off. Therefore, in an initial tube the first l substrands represent the input to
the computation, and the remaining k − l substrands are used for working
storage and representation of output. For example, a complete (5,2) library is
depicted in Fig. 3.2b.
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Fig. 3.3. (a) Five possible objects. (b) Four different bags
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We now illustrate a computation within the model. Again, the general
strategy adopted here is to generate all possible solutions to a given problem
and then exhaustively filter until either a solution is found or it can be stated
that no solution exists.

Following [133] (and the description in [120]), we describe a sticker model
solution to the Minimal Set Cover problem. This may be stated informally
thus; given a set of different objects and a set of bags containing various
subsets of the possible set of objects, what is the smallest number of bags a
person must hold to ensure that he or she holds at least one of each object?

This is illustrated in Fig. 3.3, where (a) represents a set of five different
numbered objects and (b) four different bags, each containing different subsets
of the possible set.

Formally, given a finite size S = { 2, . . . , p} (the objects), and a finite col-
lection {C1, . . . , Cq} of subsets of S, find the smallest subset I of {1, 2, . . . , q}
such that

⋃
i∈I Ci = S.

We now describe the sticker model solution to the problem instance de-
picted in Fig. 3.3 (p = 5, q = 4). Memory strands have k = p + q substrands,
and the initial tube N0 contains a (p + q, q) library. Each memory strand
represents a possible subset of bags taken from the set C, with the first q
substrands encoding the presence or absence of bags. If substrand i is set to
on, then bag Ci is present in the subset; if substrand i is set to off, Ci is not
present. For example, a memory strand with its first four substrands set to
1011 would encode a subset containing C1, C3 and C4, while one with its first
four substrands set to 0010 would encode a subset containing only C3. The
working substrands represent the subset of objects encompassed by the bags
“held.” For example, with reference to Fig. 3.3, a memory strand encoding
“010110110” is interpreted as follows; the first four substrands encode the fact
that bags C2 and C4 are held, and C2 ∪ C4 = {1, 3, 4}, a fact that is encoded
in the last five substrands.

Of course, when the initial library is created the working substrands are
all set to off, so we must first set them appropriate values. This is achieved
as follows: for each strand M , look at the first q substrands; for every ith

substrand that is turned on, use the set operation to turn on those among the
last p working substrands that represent elements of Ci. Simply phrased, for
a given memory strand, take the total subset of objects encoded by all of the
bags it holds, and turn on the substrands representing each object from that
subset. We represent the contents of N0 after setup in Table 3.1. Note that
on is represented by 1, and off by 0.

Once we have this set of strands, we wish to retain only those that encode
a subset of bags that cover the set S (that is, subsets that contain one of each
object in the full set). We achieve this by discarding those strands that do
not have each of their five working substrands (representing the objects) set
to on (or 1). This yields the strands depicted in Table 3.2.

Once we have established a set of coverings, the next task is to find in
that a covering that uses the smallest number of bags (if one exists). This
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Table 3.1. N0 after setup

M C1 C2 C3 C4 1 2 3 4 5 Subset

1 0 0 0 0 0 0 0 0 0 empty

2 0 0 0 1 0 0 1 1 5 (3,4,5)

3 0 0 1 0 1 1 0 0 1 (1,2,5)

4 0 0 1 1 1 1 1 1 1 (1,2,3,4,5)

5 0 1 0 0 1 0 1 1 0 (1,3,4)

6 0 1 0 1 1 0 1 1 0 (1,3,4)

7 0 1 1 0 1 1 1 1 1 (1,2,3,4,5)

8 0 1 1 1 1 1 1 1 1 (1,2,3,4,5)

9 1 0 0 0 0 0 1 1 1 (3,4,5)

10 1 0 0 1 0 0 1 1 1 (3,4,5)

11 1 0 1 0 1 1 1 1 1 (1,2,3,4,5)

12 1 0 1 1 1 1 1 1 1 (1,2,3,4,5)

13 1 1 0 0 1 0 1 1 1 (1,3,4,5)

14 1 1 0 1 1 0 1 1 1 (1,3,4,5)

15 1 1 1 0 1 1 1 1 1 (1,2,3,4,5)

16 1 1 1 1 1 1 1 1 1 (1,2,3,4,5)

Table 3.2. N0 after culling

M C1 C2 C3 C4 1 2 3 4 5 Subset

4 0 0 1 1 1 1 1 1 1 (1,2,3,4,5)

7 0 1 1 0 1 1 1 1 1 (1,2,3,4,5)

8 0 1 1 1 1 1 1 1 1 (1,2,3,4,5)

11 1 0 1 0 1 1 1 1 1 (1,2,3,4,5)

12 1 0 1 1 1 1 1 1 1 (1,2,3,4,5)

15 1 1 1 0 1 1 1 1 1 (1,2,3,4,5)

16 1 1 1 1 1 1 1 1 1 (1,2,3,4,5)

is achieved by sorting tube N0 into a number of tubes N0, N1, . . . , Nq, where
tube Ni contains memory strands encoding coverings using i bags. This sorting
process may be visualized as follows: imagine a row of tubes, stretching left to
right, with N0 at the left, and Nq at the right. We loop, maintaining a counter
i from 1 to 4, each time dragging right one tube any strands containing bag
i. This process is visualized in Fig. 3.4. Note, for example, how strand (3,4) is
left in N0 until the counter reaches 3, at which point it is dragged right into
N1. In this way, we end the computation with a set of tubes where Ni, i ≥ 1
contains only strands encoding coverings using i bags. This process may be
thought of as an inverted electronic version of gel electrophoresis (see Chap.
1), where “heavier” strands (those featuring more bags) are dragged further
to the right than “lighter” strands.
We then start with the smallest indexed tube (N0), and read its contents (if
any). If that tube is empty, we move on to the next highest indexed tube
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Fig. 3.4. Sorting procedure

and so on until we find a tube that contains a covering. In this case, tube
N2 contains three coverings, each using two bags. The algorithm is formally
expressed within the sticker model as follows.

(1) Initialize (p,q) library in tube N0

(2) for i = 1 to q do begin
(3) N0 ← separatei(+(N0, i),−(N0, i))
(4) for j = 1 to | Ci |

(5) set(+(N0, i), q + cj
i )

(6) end for
(7) N0 ← merge(+(N0, i),−(N0, i))
(8) end for

This section sets the object identifying substrands. Note that cj
i denotes the

jth element of set Ci. We now separate out for further use only those memory
complexes where each of the last p substrands is set to on.

(1) for i = q + 1 to q + p do begin
(2) N0 ← +(N0, i)
(3) end for
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We now sort the remaining strands according to how many bags they encode.

(1) for i = 0 to q − 1 do begin
(2) for j − 1 down to 0 do begin
(3) separate(+(Nj, i + 1),−(Nj, i + 1))
(4) Nj+1 ← merge(+(Nj, i + 1), Nj+1)
(5) Nj ← −(Nj, i + 1)
(6) end for
(7) end for

Line 3 separates each tube according to the value of i, and line 4 performs the
right shift of selected strands. We then search for a final output:

(1) Read N1

(2) else if empty then read N2

(3) else if empty then read N3

(4) . . .

3.3 Splicing Models

Since any instance of any problem in the complexity class NP may be ex-
pressed in terms of an instance of any NP -complete problem, it follows that
the multi-set operations described earlier at least implicitly provide sufficient
computational power to solve any problem in NP . We do not believe they pro-
vide the full algorithmic computational power of a Turing Machine. Without
the availability of string editing operations, it is difficult to see how the tran-
sition from one state of the Turing Machine to another may be achieved using
DNA. However, as several authors have recently described, one further oper-
ation, the so-called splicing operation, will provide full Turing computability.
Here we provide an overview of the various splicing models proposed.

Let S and T be two strings over the alphabet α. Then the splice operation
consists of cutting S and T at specific positions and concatenating the result-
ing prefix of S with the suffix of T and concatenating the prefix of T with
the suffix of S (Fig. 3.5). This operation is similar to the crossover operation
employed by genetic algorithms [68, 96].

Splicing systems date back to 1987, with the publication of Tom Head’s
seminal paper [77] (see also [78]). In [50], the authors show that the generative
power of finite extended splicing systems is equal to that of Turing Machines.
For an excellent review of splicing systems, the reader is directed to [120].

Reif’s PAM model

In [128], Reif within his so-called Parallel Associative Memory Model describes
a Parallel Associative Matching (PA-Match) operation. The essential con-
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Fig. 3.5. (a) Two strings, S and T . (b) The result of splice(S,T )

stituent of the PA-Match operation is a restricted form of the splicing oper-
ation which we denote here by Rsplice, and describe as follows. If S = S1S2

and T = T1T2, then the result of Rsplice(S, T ) is the string S1T2 provided
S2 = T1, but has no value if S2 = T1.

Leading results of Reif [128], made possible by his PA-Match operation,
concern the simulation of nondeterministic Turing Machines and the simula-
tion of Parallel Random Access Machines. We can capture the spirit of his
Turing Machine simulation through the Rsplice operation as follows: the ini-
tial tube in the simulation consists of all strings of the form SiSj where Si and
Sj are encodings of configurations of the simulated nondeterministic Turing
Machines, and such that Sj follows from Si after one (of possibly many) ma-
chine cycle. By a configuration we mean here an instantaneous description of
the Turing Machine capturing the contents of the tape, the machine state, and
which tape square is being scanned. If the Rsplice operation is now performed
between all pairs of initial strings, the tube will contain strings SkSl where Sl

follows from Sk after two machine cycles. Similarly, after t repetitions of this
operation the tube will contain strings SmSn where Sn follows from Sm after
2t machine cycles. Clearly, if the simulated Turing Machine runs in time T ,
then after O(log T ) operations the simulation will produce a tube containing
strings SoSf where So encodes the initial configuration and Sf encodes a final
configuration.

3.4 Constructive Models

In this section we describe a constructive model of DNA computation, based
on the principle of self-assembly. Molecular self-assembly gives rise to a vast
number of complexes, including crystals (such as diamond) and the DNA
double helix itself. It seems as if the growth of such structures are controlled,
at a fundamental level, by natural computational processes. A large body of
work deals with the study of self-organizational principles in natural systems,
and the reader is directed to [40] for a comprehensive review of these.

We concentrate here on the Tile Assembly Model, due to Rothemund and
Winfree [132]. This is a formal model for the self-assembly of complexes such
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as proteins or DNA on a square lattice. The model extends the theory of tiling
by Wang tiles [152] to encompass the physics of self-assembly.

Within the model, computations occur by the self-assembly of square tiles,
each side of which may labelled. The different labels represent ways in which
tiles may bind together, the strength (or “stickiness”) of the binding depending
on the binding strength associated with each side. Rules within the system
are therefore encoded by selecting tiles with specific combinations of labels
and binding strengths. We assume the availability of an unlimited number of
each tile. The computation begins with a specific seed tile, and proceeds by
the addition of single tiles. Tiles bind together to form a growing complex
representing the state of the computation only if their binding interactions
are of sufficient strength (i.e., if the pads stick together in such a way that
the entire complex is stable).
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Fig. 3.6. (a) Binary counting tiles. (b) Progression of the growth of the complex

Consider the example depicted in Fig. 3.6. This shows a simple system for
counting in binary within the Tile Assembly Model. The set of seven different
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tiles within the system is depicted in Fig. 3.6a: we have four rule tiles (labelled
either “1” or “0”) r0, r1, r2, r3, two border tiles (labelled “L” and “R”), and
a seed tile (“S”). Sides depicted with a single line have a binding strength of
1; those with a double line have a binding strength of 2. Thick lines depict a
binding strength of 0.

We impose the following important restriction: a tile may only be added
to the assembly if it is held in place by a combined binding strength of 2. In
addition, a tile with labelled sides (i.e., a rule tile) may only be added if the
labels on its side match those of its proposed neighbor. It is clear that two rule
strands in isolation cannot bind together, as the strength of the bond between
them can only equal 1. Crystallized by the seed tile, a “scaffold” of L and R
tiles emerges to support the assembly, a structure resulting from the binding
strengths associated with their sides. Imagine the situation at the beginning
of this process, where the assembly consists of one S, one L, and one R tile.
The only rule tile that is labelled to match the sides of its neighbors is r2, so
it is added to the complex.

The assembly gradually grows right to left and row by row, with the tiles
in row n > 0 representing the binary integer n. The growth of the assembly
is depicted in Fig. 3.6b, with spaces that may be filled by a tile at the next
iteration, depicted by the dashed lines. Note that the growth of the complex is
limited only by the availability of tiles, and that the “northern” and “western”
sides of the assembly are kept exposed as the assembly grows. Notice also how
some row n cannot grow left unless row n− 1 has grown to at least the same
extent (so, for example, a rule tile could not be added to row 2 at the next
iteration, because the binding strength would only equal 1).
It has been shown that, for a binding strength of 2, one-dimensional cellular
automata can be simulated, and that self-assembly is therefore universal [162].
Work on self-assembly has advanced far beyond the simple example given,
and the reader is directed to [163] for a more in-depth description of this. In
particular, branched DNA molecules [142] provide a framework for molecular
implementation of the model. Double-crossover molecules, with the four sides
of the tile represented by “sticky ends”, have been shown to self-assemble into
a two-dimensional lattice [163]. By altering the binding interactions between
different molecules, arbitrary sets of tiles may be constructed.

3.5 Membrane Models

We have already encountered the concept of performing computations by the
manipulation of multi-sets of objects. This style of programming is well es-
tablished in computer science, and Petri nets [129] are perhaps its best known
example. Biological systems have provided the inspiration for several multi-set
manipulation models, and in this section we describe a few of them.

As we have seen, abstract machines such as the Turing Machine or RAM
are widely used in studying the theory of sequential computation (i.e, com-
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putation that proceeds by the execution of a single operation per time step).
In [30], Berry and Boudol describe a machine that may be used by theorists
in the field of concurrent programming. This research is concerned with the
study of machine models that allow multiple processes executing in parallel.
We briefly describe their Chemical Abstract Machine (CHAM) in the next
section, but first describe its origins.

Most concurrency models are based on architectural principles, for ex-
ample, networks of processes communicating via “channels” or “threads.” In
[20], Banâtre and Le Métayer argue that the imposition of architectual con-
trol structures in programming languages actually hinders the programmer,
rather than helping him or her. They quote Chandy and Misra [41]:

The basic problem in programming is managing complexity. We can-
not address that problem as long as we lump together concerns about
the core problem to be solved, the language in which the program is
to be written, and the hardware on which the program is to execute.
Program development should begin by focusing attention on the prob-
lem the be solved and postponing considerations of architecture and
language constructs.

Banâtre and Le Métayer argue that it should be possible to construct an ab-
stract, high-level version of a program to solve a given problem, and that that
should be free from artificial sequentiality due to architectural constraints.
They cite the simple example of finding the maximum element in a nonempty
set [21].

In a “traditional”, imperative language, the code may look like this. Note
that n denotes the size of the set, which is stored in the array set[].

maximum ← set[0]
for loop = 1 to n − 1 do begin

c ← set[loop]
if c > maximum then maximum ← c

end

In this case the program takes the initial maximum to be the first element,
and then scans the set in a linear fashion. If an element is found that is larger
than the current maximum, then that element becomes the current maximum,
and so on until the end of the set is reached.

The program imposes a total ordering on the comparisons of the elements
when, in fact, the maximum of a set can be computed by performing compar-
isons in any order:



3.5 Membrane Models 65

while the set contains ≥ two elements do begin
select two elements, compare them and remove the smaller

end

In order to represent such programs, Banâtre and Le Métayer developed the
GAMMA language: the General Abstract Model for Multiset Manipulation
[20, 21]. In GAMMA, the above statement would be expressed thus:

maxset(s) = Γ ((R, A))(s) where
R(x, y) = x ≤ y
A(x, y) = {y}

The function R specifies the property to be satisfied by selected elements x
and y; in this case, x should be less than or equal to y. These elements are then
replaced by applying function A. There is no implied order of evaluation, if
several disjoint pairs of elements satisfy R, they can be performed in parallel.

Banâtre and Le Métayer recognized that GAMMA programs could almost
be viewed as chemical reactions, with the set being the chemical solution, R
(the reaction condition) a property to be satisfied by reacting elements, and
A (the action) the resulting product of the reaction. The computation ends
when no reactions can occur, and a stable state is reached.

Before we conclude our treatment of GAMMA, let us examine one more
program, prime number generation, again taken from [21].

The goal is to produce all prime numbers less than a given N , with
N > 2. The GAMMA solution removed multiple elements from the multi-
set {2, . . . , N}. We assume the existence of a function multiple(x, y), which
returns true if x is a multiple of y, and false otherwise. The resulting multiset
contains all primes less than N :

primes(N) = Γ ((R, A))({2 . . .N}) where
R(x, y) = multiple(x, y)
A(x, y) = {y}

One possible “trace” through the computation for N = 10 is depicted in
Fig. 3.7. The similarities between this approach and the parallel filtering model
described earlier are apparent – in the latter model, no ordering is implied
when the remove operation is performed.
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Fig. 3.7. Trace of primes(10)

The GAMMA model was extended by Berry and Boudol with the development
of the CHAM [30]. The CHAM formalism provides a syntax for molecules as
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well as a classification scheme for reaction rules. Importantly, it also introduces
the membrane construct, which is fundamental to the work described in the
next section.

P systems

P systems, a variant of the membrane model, were introduced by Gheorge
Păun in [118] (see also [119] for an overview of the entire field). They were
inspired by features of biological membranes found in nature. These mem-
branes act as barriers and filters, separating the cell into distinct regions and
controlling the passage of molecules between regions. However, although P
systems were inspired by natural membranes, they are not intended to model
them, and so we refrain here from any detailed discussion of their structure
or function.

The membrane structure of a P system is delimited by a skin that separates
the internals of the system from its outside environment. Within the skin lies
a hierarchical arrangement of membranes that define individual regions. An
elementary membrane contains no other membranes, and its region is there-
fore defined by the space it encloses. The region defined by a nonelementary
membrane is the space between the membrane and the membranes contained
directly within it. We attach an integer label to each membrane in order to
make it addressable during a computation. Since each region is delimited by
a unique membrane, we use membrane labels to reference the regions they
delimit.

1

2 3
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6 7
Membranes

SkinRegions

Environment

Environment

Environment

Environment
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6 7
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Fig. 3.8. (a) Membrane structure. (b) Tree representation

An example membrane structure is depicted in Fig. 3.8a, with its tree rep-
resentation in Fig. 3.8b. Note that the skin membrane is represented by the
root node, and that leaf nodes represent elementary membranes.

Each region contains a multiset of objects and a set of rules. Objects are
represented by symbols from a given alphabet V . Rules transform or “evolve”
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objects, and are of the form before → after, meaning “evolve every instance of
before into an instance of after.” Note that, as we are considering multi-sets,
this rule may be applied to multiple objects. Evolution rules are represented
by a pair (u, v) of strings over the alphabet V . v may be either v′ or v′δ, where
δ is a special symbol not in V . v′ is a string over {ahere, aout, ainj

} where j is
a membrane identifier. ahere means “a copy of a remains in this region”, aout

means “send a copy of a through the membrane and out of this region”, and
ainj

means “send a copy of a through the membrane of the region labelled
j” (i.e., place a copy of a in membrane j, noting that this is only possible if
the current region featuring this rule contains j). When the special symbol δ
is encountered, the membrane defining the current region (assuming it is not
the skin membrane) is “dissolved”, and the contents of the current region are
placed in the “parent” region (with reference to Fig. 3.8, if membrane 5 were
to be dissolved, then region 3 would contain the accessible regions 4, 6 and 7,
whereas only regions 4 and 5 are accessible with membrane 5 intact).

In order to simplify the notation, we omit the subscript “here”, as it is
largely redundant for our purposes. Thus the rule a → ab means “retain a
copy of a here and create a copy of b here”, whereas a → bδ means “transform
every instance of a into b and then dissolve the membrane.” Note that objects
on the left hand side of evolution rules are “consumed”, or removed, during
the process of evaluation.

We may also impose priorities upon rules. This is denoted by >, and may
be read as follows, using the example (ff → f) > (f → δ): “transform ff to
f as often as possible (halving the number of occurrences of f in the process)
until no instances of ff remain, and then transform the one remaining f to
δ, dissolving the membrane.”

We assume the existence of a “clock” that synchronizes the operation of the
system. At each time step, the configuration of the system is transformed by
the application of rules in each region in a nondeterministic, maximally parallel
fashion. This means that objects are assigned to rules nondeterministically in
parallel, until no further assignment is possible (hence maximal). This series
of transitions from one configuration to another forms the computation. A
computation halts if no rules may be applied in any region (i.e., nothing can
happen). The result of a halting computation is the number of objects sent
out through the skin membrane to the outside environment.

We now give a small worked example, taken from [118] and depicted in
Fig. 3.9.

This P system calculates n2 for any given n ≥ 0. The alphabet V =
{a, b, d, e, f}. Region 3 contains one copy each of objects a and f , and three
evolution rules. No objects are present in regions 1 and 2, so no rules can be
applied until we reach region 3. We iterate the rules a → ab and f → ff n
times in parallel, where n ≥ 0 is the number we wish to square. This gives n
copies of b and 2n copies of f . We then use a → bδ instead of a → ab, replacing
the single a with b and dissolving the membrane. This leaves n + 1 copies of b
and 2n+1 copies of f in region 2; the rules from region 3 are “destroyed” and
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Fig. 3.9. Example P system

the rules from region 2 are now used. The priority relation dictates that we
must use the rule ff → f as often as possible, so in one time step we halve
the number of copies of f and, in parallel, transform bn+1 to dn+1. In the next
step, using d → de, n+1 copies of e are produced, and the number of copies of
f is once again halved. This step is iterated n times (enforced by the priority
relation), producing n + 1 copies of e at each step, and then f → δ dissolves
membrane 2. All objects are deposited in the skin membrane, which contains
a single rule for e. In one step, all copies of e are sent out of the system using
e → eout, the number of copies of e equalling the value of n2. A trace of the
execution of this system for n = 4 is given in Fig. 3.10.

Since the initial development of P systems, several variants have appeared
in the literature. One of these, described in [116], abandons the use of mem-
brane labels and the ability to send objects to precise membranes, and instead
assigns an electrical “charge” to objects and membranes. The motivation be-
hind this change to the basic P system is that sending objects to specifically-
labelled membranes is “non-biochemical” and artificial. In the modified P
system, objects pass through membranes according to their charge; positively
charged objects enter an adjacent negatively charged region (if there are sev-
eral candidate regions, the transition is selected nondeterministically) and a
negatively charged object enters a positively charged region. Neutral objects
can only be sent out of the current region; they cannot pass through “inner”
membranes. In order to achieve universality, the new variant of the P system
is augmented with an additional operation; the action of making a membrane
thicker (the membrane dissolving operation is retained). This compensates for
the loss of membrane labels by providing an alternative method for controlling
the communication of objects through membranes.
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Fig. 3.10. Execution of P system for n = 4

In terms of their application, P systems have been used to solve instances
of NP-complete problems, notably the Satisfiability and Hamiltonian Path
Problems [165]. It is clear that the emerging field of P systems will provide a
rich vein of both theoretical results and applications. As Gheorge Păun notes
in [117], perhaps the most fundamental open question in the field concerns
the physical realization of P systems. Perhaps research in the field of cellular
computing (discussed in a later chapter) may provide further insights into
this.

3.6 Summary

In this chapter we categorized models of molecular computation into one of
four types (filtering, splicing, constructive, and membrane). Abstract models
of each type were described, as well as a selection of algorithms within them.
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We payed particular attention to the filtering algorithms, especially those of
Adleman, Lipton, and Amos et al.

3.7 Bibliographical Notes

The Proceedings of the Second Annual Workshop on DNA Based Computers
[94] are significant in that they contain descriptions of both the sticker model
and the parallel filtering model, as well as an early paper of Winfree’s on self-
assembly. Splicing systems are described in detail in [120], a comprehensive
review of membrane computing is given in [119], and an assortment of essays
dealing mainly with theoretical aspects of DNA computing is collected in [84].
Finally, [13] reviews topics in the theory of DNA computing.
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Complexity Issues

“Out of intense complexities intense simplicities emerge.”
– Sir Winston Churchill.

In this chapter we present an analysis of the complexity and viability of DNA
computations. Such analysis has, in part, been motivated by the search for
so-called “killer applications”: applications of this mode of computation that
would establish its superiority within a certain domain. An assured future for
DNA computation can only be established through the the discovery of such
applications. We introduce our framework for the analysis of DNA algorithms,
and argue that existing analyses are flawed and unrealistic. In particular, we
argue that computations that are assumed to run in polylogarithmic time
actually take polynomial time to realize in the laboratory. We develop further
our analysis to motivate the strong model of DNA computation, and analyze
existing algorithms within it. We argue that our strong model may provide
more realistic estimates of the resources required by DNA algorithms. We
show how existing models of computation (Boolean circuit and P-RAM) may
be effectively simulated using DNA, and give a general framework for the
translation of high-level algorithms down to the level of operations on DNA.

4.1 Introduction

Following the initial promise and enthusiastic response to Adleman’s seminal
work [3] in DNA computation, progress towards the realization of worthwhile
computations in the laboratory became stalled. One reason for this is that the
computational paradigm employed by Adleman, and generalized by the theo-
retical work of others [12, 98, 128], relies upon filtering techniques to isolate
solutions to a problem from an exponentially sized initial solution of DNA.
This volume arises because all possible candidate solutions have to be en-
coded in the initial solution. As Hartmanis points out in [76], the consequence
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is that, although laboratory computations should work for the smallest prob-
lem sizes, the experiments do not realistically scale because vast amounts of
DNA are required to initiate computations with even modest problem size.
For example, Hartmanis shows that a mass of DNA greater than that of the
earth would be required to solve a 200-city instance of the Hamiltonian Path
Problem.

The notion of a “killer application”, namely, an application of DNA com-
putation that would establish the superiority of this paradigm over others in
particular domains, was first explicitly described by Rubin [134], and subse-
quently by Landweber and Lipton [95]. If practitioners of DNA computation
insist on exponential-sized volumes, there can be no hope of discovering “killer
applications.” An assured future for DNA computation can only be established
through the discovery of such applications.

It is not inherently the case that exponentially sized volumes of DNA need
be used in DNA computation. Clearly, if exponentially sized volumes are to
be avoided, then an alternative algorithmic paradigm to that employed by
Adleman in [3] is required. Such a successful paradigm is always likely to
emulate traditional computations which construct individual solutions rather
than sift them out of a vast reservoir of candidates. It might still be argued
that the “exponential curse” could not, even then, be avoided for the so-called
NP -complete problems [63]. If an exact solution is required for any of these,
then (employing any extant algorithm) exponential sequential running time
is required. A DNA computation, in seeking to reduce this to sub-exponential
parallel running time, will certainly require an exponential volume of DNA.
However, in general, no one sensibly seeks exact solutions to the NP -complete
problems. In traditional computation, we either employ heuristics to obtain
approximate answers or use randomized methods to obtain exact solutions
with high probability. These revised algorithms lead to solutions within poly-
nomial sequential time. Such a view should also be taken for these problems
within DNA computation, that is, we should use algorithms which do not
inherently require exponential resources.

It is unlikely to be enough, in the quest for “killer applications”, to sim-
ply have polynomial-volumed computations. We ought, at the same time, to
ensure that the vast potential for parallelism is employed to obtain rapid com-
putations. The view taken by the silicon-based parallel computing community
[64] is that efficient parallel algorithms, within the so-called Parallel Random
Access Machine (P-RAM) model of computation, should have polylogarith-
mic running time (and use a polynomial number of processors). Problems for
which such solutions exist define the complexity class NC . If DNA computa-
tion is to compete within this domain, then we should clearly also look for
polylogarithmic running times within polynomially volumed computations.
The discovery of such solutions might well provide candidates for “killer ap-
plications.” Regardless of the problem considered, it is unlikely to provide a
“killer application” unless the computational resources required for a DNA
computation (the product of the running time and volume of DNA required)
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match those needed for a conventional computation (the product of the run-
ning time and the number of processors used).

It is clearly crucial, especially when judging the candidacy of a proposed
DNA computation for the role of “killer application,” to have a firm grasp of
the computational resources that it requires. It is often the case that there is
not an agreed-upon model of computation in the literature within which we
may agree what the required resources are for any particular computation.
This chapter attempts to address these issues in a realistic way.

Traditional computational complexity theory [5, 63] is concerned with
quantifying the resources (generally time and space) needed to solve compu-
tational problems. Meaningful analysis of the complexity of algorithms may
only take place in the context of an agreed-upon model of computation, or
machine model . Many different machine models have been proposed in the
past, including the Deterministic Turing Machine, Boolean circuit [54, 75],
and P-RAM [61, 64]. The field of DNA computing also suffers from the prob-
lem of proliferation of machine models. Several models have been proposed,
within which we may construct algorithms for the solution of computational
problems. However, complexity analyses of algorithms within different models
of DNA computation are meaningless, since there are no uniform definitions
of the concepts of time and space. Furthermore, if we are to compare a DNA-
based model with a more traditional machine model, we require a way of
demonstrating equivalence between the two.

4.2 An Existing Model of DNA Computation

We may describe abstract models of computation without necessarily consid-
ering their implementation. In [64], for example, for the sake of emphasizing
what is inherently parallelizable within problems, the authors disregard con-
straints of implementation. However, in what follows we are naturally con-
strained by what is feasible in the intended mode of implementation; in this
case, what is possible in the molecular biology laboratory. We consider models
that operate upon sets of strings . It is generally the case that a DNA compu-
tation starts and ends with a single set of strings. An algorithm is composed
of a sequence of operations upon one or more sets of strings. At the end of
the algorithm’s execution, a solution to the given problem is encoded as a
string in the final set. We use the term computational substrate to describe
the substance that is acted upon by the implementation of a model. Since
DNA is the underlying computational substrate of all models described (as
we shall see), we may naturally assume that all abstract models operate on
strings over a four-letter alphabet {A,G,C,T}. For a detailed description of
the structure of the DNA molecule, the reader is referred to [156, 155], as well
as to Chap. 1.
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The weak parallel filtering model

Here we recall the basic legal operations on sets (or tubes) [65] within what we
now refer to as the weak model. The operation set described here is constrained
by biological feasibility, but all operations are currently realisable with current
technology. The biological implementation of this operation set is described
in detail in Chap. 5.

• remove(U, {Si}). This operation removes from the tube U , in parallel, any
string which contains at least one occurrence of any of the substrings Si.

• union({Ui}, U). This operation, in parallel, creates the tube U , which is
the set union of the tubes Ui.

• copy(U, {Ui}). In parallel, this operation produces a number of copies, Ui,
of the tube U .

• select(U). This operation selects an element of U uniformly at random, if
U is the empty set then empty is returned.

We now describe an example algorithm within the model. The problem solved
is that of generating the set of all permutations of the integers 1 to n. The
initial set and the filtering out of strings which are not permutations were
described earlier. The only non-self-evident notation employed below is ¬i to
mean (in this context) any integer in the range which is not equal to i.

Problem: Permutations
Generate the set Pn of all permutations of the integers {1, 2, . . . , n}.

Solution:

• Input: The input set U consists of all strings of the form p1i1p2i2 . . . pnin
where, for all j, pj uniquely encodes “position j” and each ij is in
{1, 2, . . . , n}. Thus each string consists of n integers with (possibly) many
occurrences of the same integer.

• Algorithm:

for j = 1 to n − 1 do
begin
copy(U, {U1, U2, . . . , Un})
for i = 1, 2, . . . , n and all k > j

in parallel do remove(Ui, {pj¬i, pki})
union({U1, U2, . . . , Un}, U)
end

Pn ← U

• Complexity: O(n) parallel-time.
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After the jth iteration of the for loop, the computation ensures that in
the surviving strings the integer ij is not duplicated at positions k > j in
the string. The integer ij may be any in the set {1, 2, . . . , n} (which one it is
depends in which of the sets Ui the containing string survived). At the end of
the computation each of the surviving strings contains exactly one occurrence
of each integer in the set {1, 2, . . . , n} and so represents one of the possible
permutations. Given the specified input, it is easy to see that Pn will be the
set of all permutations of the first n natural numbers. Production of the set
Pn can be a useful sub-procedure for other computations, as we have seen in
Chap. 3.

Analysis

Attempts have been made to characterize DNA computations using tradi-
tional measures of complexity, such as time and space. Such attempts, how-
ever, are misleading due to the nature of the laboratory implementation of
the computation. We first examine these algorithms from a time complexity
standpoint. Most extant models quantify the time complexity of DNA-based
algorithms by counting the number of “biological steps” required to solve the
given problem. Such steps include the creation of an initial library of strands,
separation of subsets of strands, sorting strands on length, and chopping and
joining strands.

From the point of view of establishing the parallel-time complexities of
algorithms within the model, the basic operations are assumed to take con-
stant time. This assumption has been commonly made by many authors in
the literature [65, 98, 113]. However, these operations are frequently imple-
mented in such a way that it is difficult to sustain this claim. For example,
the union operation consists of pouring a number of tubes into a single tube,
and this number is usually, in some way, problem size dependent. Assuming
that in general we have a single laboratory assistant, this implies that such
operations run in time proportional to the problem size.

Obviously, in the general case, a single laboratory assistant may not pour
n tubes into one tube in parallel, nor may he or she split the contents of one
tube into n tubes in parallel. This observation, if we are to be realistic in
measuring the complexity of DNA computations, requires us to introduce the
following constant-time atomic operation:

• pour(U, U ′). This operation creates a new tube, U , which is the set union
of the tubes U and U ′.

As we have observed, the pour operation is a fundamental component of all
compound operations. It therefore follows that more realistic analyses of the
time complexities of algorithms may be obtained by taking this operation into
consideration.
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4.3 A Strong Model of DNA Computation

In what follows we refine the weak model just described. We assume that the
initial tube (which takes at most linear time to construct) is already set up.

The pour operation is fundamental to all compound operations within
our weak model. We must therefore reassess the time complexity of these
operations. The remove operation requires adding to U

1. i tubes containing short primers to mark selected strands
2. restriction enzymes to destroy marked strands

This operation is inherently sequential, since there must be a pause between
steps 1 and 2 in order to allow the primers to mark selected strands. Therefore,
the remove operation takes O(i) time. Creating the union of i tubes is an
inherently sequential operation, since the assistant must first pour U1 into U ,
then U2, and so on, up to Ui. Rather than taking constant time, the union
operation actually takes O(i) time. It is clear that the copy operation may be
thought of as a reverse-union operation, since the contents of a single tube U
are split into many tubes, {Ui}. Therefore, copy takes O(i) time.

We may strengthen the strong model even further by taking kinetic issues
into consideration. All filtering models rely upon the fact that every possi-
ble solution to the given problem is present in the initial tube with equal
probability. These solutions are created by the action of component molecules
“sticking” together to form long chains. Given a particular problem of size n,
we may naively assume that the creation of the initial library takes O(log n)
time [93]. Given a particular solution, we may imagine a balanced binary tree,
where each leaf node represents a component molecule, an internal node rep-
resents a “sticking-together” reaction, and the root node represents the string
encoding the solution. Since the depth of the tree is log n, the time complexity
of the creation phase immediately follows.

However, Kurtz et al.[93] present a more detailed analysis of the kinetic
issues involved, suggesting that the creation phase actually takes Ω(n2) time.
Given the space available, and the fact that in what follows we assume that
the initial library is set up, we omit a detailed description of the arguments
presented in [93]. However, we acknowledge the importance of taking kinetic
issues into consideration in the future.

Complexity comparisons

In this section we compare time complexities for algorithms previously de-
scribed [65] within both the weak and strong models. In particular, we ex-
amine in detail the problem of generating a set of permutations. This will
characterize the general form of comparisons that can be made, so that in the
space available we merely tabulate comparisons for other algorithms.

In [65] the authors claimed a time complexity for the Permutations algo-
rithm of O(n). This is based on the assumption that remove is a constant-time
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operation. We justify a new time complexity of O(n2) as follows: at each iter-
ation of the for loop we perform one copy operation, n remove operations and
one union operation. The remove operation is itself a compound operation,
consisting of 2n pour operations. The copy and union operations consist of n
pour operations.

Similar considerations cause us to reassess the complexities of the algo-
rithms described in [65], according to Table 4.1.

Table 4.1. Time comparison of algorithms within the weak and strong models

Algorithm Weak Strong

Three coloring O(n) O(n2)
Hamiltonian path O(1) O(n)
Subgraph isomorphism O(n) O(n2)
Maximum clique O(n) O(n2)
Maximum independent set O(n) O(n2)

Although we have concentrated here on adjusting time complexities of algo-
rithms described in [65], similar adjustments can be made to other work. An
example is given in the following section.

4.4 Ogihara and Ray’s Boolean Circuit Model

Several authors [50, 113, 128] have described models of DNA computation
that are Turing-complete. In other words, they have shown that any process
that could naturally be described as an algorithm can be realized by a DNA
computation. [50] and [128] show how any Turing Machine computation may
be simulated by the addition of a splice operation to the models already
described in this book. In [113], Ogihara and Ray describe the simulation of
Boolean circuits within a model of DNA computation. The complexity of these
simulations is therefore of general interest. We first describe that of Ogihara
and Ray [113].

Boolean circuits are an important Turing-equivalent model of parallel com-
putation (see [54, 75]). An n-input bounded fan-in Boolean circuit may be
viewed as a directed, acyclic graph, S, with two types of node: n input nodes
with in-degree (i.e., input lines) zero, and gate nodes with maximum in-degree
two. Each input node is associated with a unique Boolean variable xi from the
input set Xn = (x1, x2, . . . , xn). Each gate node, gi is associated with some
Boolean function fi ∈ Ω. We refer to Ω as the circuit basis. A complete basis
is a set of functions that are able to express all possible Boolean functions.
It is well known [143] that the NAND function provides a complete basis by
itself, but for the moment we consider the common basis, according to which
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Ω = {∧,∨,¬}. In addition, S has some unique output node, s, with out-
degree zero. An example Boolean circuit for the three-input majority function
is depicted in Fig. 4.1.

x1

S

x x2 3

Fig. 4.1. Boolean circuit for the three-input majority function

The two standard complexity measures for Boolean circuits are size and depth:
the size of a circuit is S, and m is the number of gates in S; its depth, d, is
the number of gates in the longest directed path connecting an input vertex
to an output gate. The circuit depicted in Fig. 4.1 has size 8 and depth 3.

In [113], Ogihara and Ray describe the simulation of Boolean circuits
within a model of DNA computation. The basic structure operated upon
is a tube, U , which contains strings representing the results of the output of
each gate at a particular depth. The initial tube contains strands encoding
the values of each of the inputs Xn.

In what follows, Ω = {∧,∨}. For each i, 1 ≤ i ≤ m, a string σ[i] is fixed.
The presence of σ[i] in U signifies that gi evaluates to 1. The absence of σ[i] in
U signifies that gi evaluates to 0. The initial tube, U , (i.e., a tube representing
the inputs Xn is created as follows:

for each gate xi do
if xi = 1 then U ← U ∪ σ[i]

end for
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The simulation of gates at level k > 0 proceeds as follows. We denote by
i1 and i2 the indices of the gates that supply the inputs for gi.

(1) Input(U)
(2) for k = 1 to d do
(3) for each gate gi at level k in parallel do
(4) if gi computes ∨ then do
(5) if (σ[i1] ∈ U) or (σ[i2] ∈ U) then U ← U ∪ σ[i]
(6) else if gi computes ∧ then do
(7) if (σ[i1] ∈ U) and (σ[i2] ∈ U) then U ← U ∪ σ[i]
(8) end for
(9) end for

At step (1) the initial tube, U , is created. Then, for each circuit level k > 0
(step 2), the gates at level k are simulated in parallel (steps 3 through 8). The
simulation of each gate gi at level k is achieved as follows. If gi is an ∨-gate,
the string σ[i] is made present1 in U (i.e., gi evaluates to 1) if either of the
strings representing the inputs to gi is present in U (step 5). If gi is an ∧-gate,
the string σ[i] is made present in U (i.e., gi evaluates to 1) if both of the strings
representing the inputs to gi are present in U (step 7). The simulation then
proceeds to the next level. At the termination of the computation, Ogihara
and Ray analyze the contents of U to determine the output of the circuit.

4.4.1 Ogihara and Ray’s Implementation

In this section we describe the laboratory implementation of the abstract
Boolean circuit model just described. The circuit simulated in [113] is depicted
in Fig. 4.2.

Each gate gi is assigned a sequence of DNA, σ[i], of length L, beginning
with a specific restriction site, E . Each edge i → j is assigned a sequence ei,j

that is the concatenation of the complement of the 3’ L/2-mer of σ[i] and
the complement of the 5 L/2-mer of σ[j]. In this way, ei,j acts as a “splint”
between gi and gj if and only if both σ[i] and σ[j] are present. However, we
later highlight a case where this strand design does not hold.

The simulation of gates at level 0 (i.e., the construction of the initial tube)
proceeds as follows. Begin with a tube of solution containing no DNA. For
each input gate xi that evaluates to 1, pour into the tube a population of
strands representing σ[i]. If xi evaluates to 0, do not add σ[i] to the tube.

We now consider the simulation of gates at level k > 0. The simulation of
∨-gates differs from that ∧-gates, so we first consider the case of an ∨-gate,
gj , at level k.
First, pour into the tube strands representing σ[j]. Then, for each edge i → j
pour into the tube strands representing ei,j. Allow ligation to occur. If strands

1 The process by which this is achieved is described in detail in Sect. 4.4.1.
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Fig. 4.2. Boolean circuit simulated by Ogihara and Ray

representing either of the inputs to gj are present, the edge strands will cause
strands of length 2L to be formed, consisting of the concatenation of the
sequence representing the gi with the sequence representing gj. This process
is depicted in Fig. 4.3a. These strands are then separated out by running the
solution on a polyacrylamide gel. These strands are then cut with a restriction
enzyme recognizing sequence E . This step leaves in solution strands of length
L that correspond to gj (i.e., gj evaluates to 1).

We now consider the simulation of an ∧-gate, gj , at level k. Again, pour
into the tube strands representing σ[j]. Then, for all edges i → j pour into the
tube strands representing ei,j . Allow ligation to occur. If strands representing
both of the inputs to gj are present, the edge strands will cause strands of
length 3L to be formed, consisting of the concatenation of the sequence rep-
resenting the first input to gj, the sequence representing gj, and the sequence
representing the second input to gj (see Fig. 4.3b). Note that this splinting
only occurs if the polarity of the edge splints is designed carefully, and we con-
sider this in the next section. The strands of length 3L are again separated
out by a gel and cut with the appropriate restriction enzyme. This step leaves
in solution strands of length L that correspond to gj (i.e., gj evaluates to 1).

If k = d, we omit the gel electrophoresis and restriction stages, and simply
run the solution on a gel. If the output gate, s, is an ∨-gate, the output of the
circuit is 1 if and only if 2L length strands exist in solution. If s is an ∧-gate,
the output of the circuit is 1 if and only if 3L length strands exist in solution.

Experimental results obtained

In [113], Ogihara and Ray report attempts to simulate the circuit previously
described using techniques of molecular biology. Their implementation is as
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Fig. 4.3. (a) Splinting for ∨-gate. (b) Splinting for ∧-gate

described in the previous section. The results obtained were ambiguous, al-
though Ogihara and Ray claim to have identified the ambiguity as being
caused by pipetting error.

Complexity analysis

Within the strong model, it appears that the methods of [113] require a num-
ber of pour operations where linearity in the size of the circuit simulated is
easily demonstrated. We recall that the basic circuit model considered in their
paper is that of “semi-unbounded fan-in circuits”:

Definition 1. A semi-unbounded fan-in Boolean circuit of n inputs is a la-
belled, directed acyclic graph whose nodes are either inputs or gates. Inputs,
of which there are exactly 2n, have fan-in 0 and each is labelled with a unique
Boolean literal xi or xi (1 ≤ i ≤ n). Gates are either ∧ (conjunction) or ∨
(disjunction) gates. The former have fan-in of exactly 2; the latter may have
an arbitrary fan-in. There is a unique gate with fan-out of 0, termed the out-
put. The depth of a gate is the length of the longest directed path to it from an
input. The size of such a circuit is the number of gates; its depth is the depth
of the output gate.

We note, in passing, that there is an implicit assumption in the simulation of
[113] that such circuits are levelled , i.e. every gate at depth k (k > 0) receives
its inputs from nodes at depth k-1. While this is not explicitly stated as being
a feature of their circuit model, it is well known that circuits not organized in
this way can be replaced by levelled circuits with at most a constant factor
increase in size.

The simulation associates a unique DNA pattern, σ[i], with each node of
the circuit, the presence of this pattern in the pool indicating that the ith

node evaluates to 1. For a circuit of depth d the simulation proceeds over
d rounds: during the kth round only strands associated with nodes at depth
k-1 (which evaluate to 1) and gates at depth k are present. The following
pour operations are performed at each round: in performing round k (k ≥ 1)
there is an operation to pour the strand σ[gi] for each gate gi at depth k.
Furthermore, there are operations to pour a “linker” for each different edge
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connecting a node at level k− 1 to a node at level k. We thus have a total, in
simulating a circuit C of size m and depth d, of

d∑
k=1

| {g : depth(g) = k} | + | {(g, h) : depth(h) = k and (g, h) ∈ Edges(C)} |

distinct pour operations being performed. Obviously (since every gate has a
unique depth)

d∑
k=1

| {g : depth(g) = k} | = m

Furthermore,

d∑
k=1

| {g : depth(g) = k} | + | {(g, h) : depth(h) = k and (g, h) ∈ Edges(C)} | ≥ 2m

since every gate has at least two inputs. It follows that the total number of
pour operations performed over the course of the simulation is at least 3m.

Despite these observations, Ogihara and Ray’s work is important because
it establishes the Turing-completeness of DNA computation. This follows from
the work of Fischer and Pippenger [60] and Schnorr [139], who described
simulations of Turing Machines by combinational networks. Although a Turing
Machine simulation using DNA has previously been described by Reif [128],
Ogihara and Ray’s method is simpler, if less direct.

4.5 An Alternative Boolean Circuit Simulation

Since it is well known [54, 75, 157] that the NAND function provides a com-
plete basis by itself, we restrict our model to the simulation of such gates. In
fact, the realization in DNA of this basis provides a far less complicated sim-
ulation than using other complete bases. It is interesting to observe that the
fact that NAND offers the most suitable basis for Boolean network simulation
within DNA computation continues the traditional use of this basis as a fun-
damental component within new technologies, from the work of Sheffer [143],
that established the completeness of NAND with respect to propositional
logic, through classical gate-level design techniques [75], and, continuing, in
the present day, with VLSI technologies both in nMOS [106], and CMOS [159,
pp. 9–10].

The simulation proceeds as follows: An n-input, m-output Boolean net-
work is modelled as a directed acyclic graph, S(V, E), in which the set of
vertices V is formed from two disjoint sets, Xn, the inputs of the network (of
which there are exactly n) and G, the gates (of which exactly m are distin-
guished as output gates). Each input vertex has in-degree 0 and is associated
with a single Boolean variable, xi. Each gate has in-degree equal to 2 and is
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associated with the Boolean operation NAND. The m distinguished output
gates, t1, t2, . . . , tm, are conventionally regarded as having out-degree equal
to 0. An assignment of Boolean variables from < 0, 1 >n to the inputs Xn

ultimately induces Boolean values at the output gates < t1, . . . , tm >. An n-
input, m-output Boolean network S is said to compute an n-input, m-output
Boolean function

f(Xn) :< 0, 1 >n→< 0, 1 >m=def< f (i)(Xn) :< 0, 1 >n→ {0, 1} : 1 ≤ i ≤
m > if ∀α ∈< 0, 1 >n ∀1 ≤ i ≤ m ti(α) = f (i)(α).

The two standard complexity measures for Boolean networks are size and
depth: the size of a network S, denoted C(S), is the number of gates in S; its
depth, denoted by D(S), is the number of gates in the longest directed path
connecting an input vertex to an output gate.

The simulation takes place in three distinct phases:

1. Set-up
2. Level simulation
3. Final read-out of output gates

We now describe each phase in detail.

Set-up

In what follows we use the term tube to denote a set of strings over some
alphabet σ. We denote the jth gate at level k by gj

k. We first create a tube, T0,
containing unique strings of length l, each of which corresponds only to those
input gates that have value 1. We then create, for each level 1 ≤ k < D(S),
a tube Tk containing unique strings of length 3l representing each gate at
level k. We also create a tube Sk, containing strings corresponding to the
complement of positions 2l − 5 to 2l + 5 for each gj

k. We define the concept
of complementarity in the next section, but for the moment we assume that
if sequence x and its complement x are present in the same tube, the string
containing sequence x is in some way “marked.”

We then create tube TD(S), containing unique strings representing the
output gates < t1, . . . , tm >. These strings representing gates at level 1 ≤ k <
D(S) are of the form xj

kyj
kzj

k. If gate gj
k takes its input from gates gm

k−1 and

gn
k−1, then the sequence representing xj

k is the complement of the sequence

representing zm
k−1, and yk

j is the complement of the sequence representing

zn
k−1. The presence of zj

k therefore signifies that gj
k has an output value of 1.

The strings in tube TD(S) are similar, but the length of the sequence zj

D(S)

is in some way proportional to j. Thus, the length of each string in TD(S) is
linked to the index of the output gate it represents.
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Level simulation

We now describe how levels 1 ≤ k < D(S) are simulated. We create the set
union of tubes Tk−1 and Tk. Strings representing gates which take either of
their inputs from a gate with an output value of 1 are “marked”, due to their
complementary nature. We then remove from Tk all strings that have been
marked twice (i.e., those representing gates with both inputs equal to one).
We then split the remaining strings after section yj

k, retaining the sequences

representing zj
k. This subset then forms the input to tube Tk+1.

Final read-out of output gates

At level D(S) we create the set union of tubes TD(S)−1 and TD(S) as described
above. Then, as before, we remove from this set all strings that have been
marked twice. By checking the length of each string in this set we are therefore
able to say which output gate has the value 1 and which has the value zero,
respectively, by the presence or absence of a string representing the gate in
question.

4.6 Proposed Physical Implementation

We now describe how the abstract model detailed in the previous section
may be implemented in the laboratory using standard biomolecular manipu-
lation techniques. The implementation is similar to that of our parallel filtering
model, described in [6, 14].

We first describe the design of strands representing the input gates Xn.
For each Xn that has the value 1 we synthesize a unique strand of length l.
We now describe the design of strands representing gates at level 1. We have
already synthesized a unique strand to represent each gj

k at the set-up stage.
Each strand is comprised of three components of length l, representing the
gate’s inputs and output. Positions 0 to l represent the first input, positions
l + 1 to 2l represent the second input, and positions 2l + 1 to 3l represent the
gate’s output. Positions l− 3 to l +3 and positions 2l− 3 to 2l +3 correspond
to the restriction site CACGTG. This site is recognized and cleaved exactly
at its midpoint by the restriction enzyme PmlI, leaving blunt ends. Due to
the inclusion of these restriction sites, positions 0 to 2, l+1 to l+3, and 2l+1
to 2l + 3 correspond to the sequence GTG, and positions l − 3 to l, 2l − 3
to 2l, and 3l − 3 to 3l correspond to the sequence CAC. The design of the
other subsequences is described in Section 4.5. A graphical depiction of the
structure of each gate strand is shown in Fig. 4.4.

The simulation proceeds as follows for levels 1 ≤ k < D(S).

1. At k pour the strands in tube Tk−1 into Tk. These anneal to the gate
strands at the appropriate position.
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Fig. 4.4. Structure of a gate strand

2. Add ligase to Tk in order to seal any “nicks.”
3. Add the restriction enzyme PmlI to Tk. Because of the strand design, the

enzyme cleaves only those strands that have both input strands annealed
to them. This is due to the fact that the first restriction site CACGTG
is only made fully double stranded if both of these strands have annealed
correctly. This process is depicted in Fig. 4.5.

4. Denature the strands and run Tk through a gel, retaining only strands of
length 3l. This may be achieved in a single step by using a denaturing gel
[136].

5. Add tube Sk to tube Tk. The strands in tube Sk anneal to the second
restriction site embedded within each retained gate strand.

6. Add enzyme PmlI to tube Tk, which “snips” off the zj
k section (i.e., the

output section) of each strand representing a retained gate.
7. Denature and run Tk through another gel, this time retaining only strands

of length l. This tube, Tk, of retained strands, forms the input to Tk+1.
We now proceed to the simulation of level k + 1.
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Fig. 4.5. (a) Both inputs = 0. (b) First input = 1. (c) Second input = 1. (d) Both
inputs = 1
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At level D(S) we carry out steps 1 through 7, as described above. However,
at steps 4 and 7 we retain all strands of length ≥ 3l. We are now then ready
to implement the final read-out phase. This involves a simple interpretation
of the final gel visualisation. Since we know the unique length uj of each

zj

D(S) section of the strand for each output gate tj , the presence or absence

of a strand of length uj + 2l in the gel signifies that tj has the value 1 or 0
respectively.

We now illustrate this simulation with a small worked example. We
describe the DNA simulation of the small NAND-gate circuit depicted in
Fig. 4.6a. The sequences chosen to represent each gate strand are represented
in Fig. 4.6b, the shape of each component diagrammatically representing its
sequence. It is clear from the diagram that the input and output components
of connected gates fit each other in a “lock-key” fashion. Given the inputs
shown in Fig. 4.6a, the simulation proceeds as follows. Gate g1 has input val-
ues of 0 and 1, so we add to tube T0 a strand representing the complement of
the second input component of the strand representing g1. Gate g2 has both
inputs equal to 1, so we add to tube T0 strands representing the complement
of both input components of g2. We then add tube T0 to tube T1, allow anneal-
ing, and ligate. We next add the appropriate restriction enzyme. The strands
representing g1 are not cleaved, since the first restriction site is not made
fully double stranded. The strands representing g2 are cleaved, since the first
restriction site is fully double stranded. We then sort T1 on length using a gel
following PCR, “snip” off the output components of full-length strands using
a second blunt ended restriction enzyme, and remove the output components.
These retained strands are then added as input to T2, and we repeat the above
procedure. After sorting on length, the presence of intact, full-length strands
indicates that the circuit has the output value 1 (Fig. 4.6c).

However, there is a potential problem in the restriction of side-by-side an-
nealed oligonucleotides in that there is a nick in the double stranded DNA.
This problem can be potentially solved by using DNA ligase. The problem
is that it is difficult to ensure 100% ligation. Failure of ligation yields false
positives, i.e., strands that should have been restricted escape into the next
stage. Therefore the restriction enzyme used will have to be indifferent to
the presence of a nick. One potential group of such nick resistant restriction
enzymes is the type III restriction enzymes. The type III enzymes cut at a
specific distance 3’ from the recognition site; e.g., restriction enzyme Eco57I
recognizes CTGAAG, and then cuts the top 16 nucleotides and the bottom
14 nucleotides of the recognition site. We may engineer Eco57I sites in all
the input oligonucleotides such that the restriction site extends across adja-
cent sequences. Digestion of the DNA should be possible only if both input
oligonucleotides are double stranded. We can easily test nick resistance and
dependence on double strandedness of both input oligonucleotides by creation
of artificial substrates with and without nicks and substrates that are fully
double stranded, half double stranded, and fully single stranded.
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Fig. 4.6. (a) Circuit to be simulated. (b) Strand representing gates. (c) Stages of
the simulation

4.7 Analysis

We now compare both our and Ogihara and Ray’s models by describing how
Batcher sorting networks [22] may be implemented within them. Batcher net-
works sort n inputs in O(log2n) stages. In [157], Wegener showed that if n = 2k

then the number of comparison modules is 0.5n(logn)(log n−1)+2n−2. The
circuit depth (again expressed in terms of the number of comparison modules)
is 0.5(log n)(log n+1). A comparison module has two (Boolean) inputs, x and
y, and two outputs, MIN(x, y) (which is just x AND y) and MAX(x, y)
(which is just x OR y).

Using NAND we can build a comparison module with five NAND gates
and having depth 2 (the module is levelled; so since the Batcher network is
levelled with respect to comparison modules, the whole realization in NAND
gates will be levelled). The NAND gate realization is

MIN(x, y) = NAND(NAND(x, y), NAND(x, y)) - 2 gates, depth 2;
MAX(x, y) = NAND(NAND(x, x), NAND(y, y)) - 3 gates, depth 2;

If we assume that n = 2k we get the total size (in terms of number of gates)
as 2.5(logn)(log n − 1) + 10n − 10 and depth (in gates) as (log n)(logn + 1).

Ogihara and Ray use an AND and OR gate simulation, so they would real-
ize a comparison module with two gates (MAX(x, y) = x OR y; MIN(x, y) =
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x AND y)) and depth 1, giving the size of the network as n(log n)(log n −
1) + 4n − 4 and the depth of the network as 0.5(logn)(log n + 1).

Within the context of our strong model [10], the volumes of DNA and the
time required to simulate an n-input Batcher network within each model are
depicted in Table 4.2. K1 and K2 are constants, representing the number
of copies of a single strand required to give reasonable guarantees of correct
operation. The coefficient of 7 in the A&D time figure represents the number
of separate stages in a single level simulation. If we concentrate on the time
measure for n = 2k we arrive at the figures shown in Table 4.3.

Table 4.2. Model comparison for Batcher network simulation

Model Volume Time

O&R (K1)(n(log n)(log n − 1) + 4n − 4) n(log n)(log n − 1) + 4n + 4

A&D (K2)(2.5(log n)(logn − 1) + 10n − 10) 7(log n)(log n + 1)

Table 4.3. Time comparisons for different values of k

n k O&R A&D

1024 10 92196 770
220 20 4 ∗ 108 2940
240 40 1.7 ∗ 1015 11480

Roweis et al. claim that their sticker model [133] is feasible using 256 distinct
strands. We therefore conclude that our implementation is technically feasible
for input sizes that could not be physically realized in silico using existing
fabrication techniques.

4.8 Example Application: Transitive Closure

We now demonstrate how a particular computation, transitive closure, may
be translated into DNA via Boolean circuits. In this way we demonstrate the
feasibility of converting a general algorithm into a sequence of molecular steps.

The transitive closure problem

The computation of the transitive closure of a directed graph is fundamental to
the solution of several other problems, including shortest path and connected
components problems. Several variants of the transitive closure problem exist;
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we concentrate on the all-pairs transitive closure problem. Here, we find all
pairs of vertices in the input graph that are connected by a path.

The transitive closure of a directed graph G = (V, E) is the graph G∗ =
(V, E∗), where E∗ consists of all pairs < i, j >, such that either i = j or there
exists a path from i to j. An example graph G is depicted in Fig. 4.7a with
its transitive closure G∗ depicted in Fig. 4.7b.

(b)

1 2

3 4

5

1 2

3 4

5

(a)

Fig. 4.7. (a) Example graph, G. (b) Transitive closure of G

We represent G by its adjacency matrix, A. Let A∗ be the adjacency matrix
of G∗. In [83], JàJà shows how the computation of A∗ may be reduced to
computing a power of a Boolean matrix.

We now describe the structure of a NAND gate Boolean circuit to com-
pute the transitive closure of the n×n Boolean matrix A. For ease of exposition
we assume that n = 2p.

The transitive closure, A∗, of A is equal to (A + I)n, where I is the n× n
identity matrix. This is computed by p = log2 n levels. The ith level takes
as input the matrix output by level i − 1 (with level 1 accepting the input

matrix A + I) and squares it: thus level i outputs a matrix equal to (A + I)2
i

(Fig. 4.8).
To compute A2 given A, the n2 Boolean values A2

i,j (1 ≤ i, j ≤ n) are

needed. These are given by the expression A2
i,j =

n

∨
k=1Ai,k ∧Ak,j . First, all the

n3 terms Ai,k ∧ Ak,j (for each 1 ≤ i, j, k ≤ n) are computed in two (parallel)
steps using two NAND gates for each ∧-gate simulation. Using NAND gates,
we have x ∧ y = NAND(NAND(x, y), NAND(x, y)). The final stage is to

compute all of the n2 n-bit sums
n

∨
k=1 (Ai,k ∧Ak,j) that form the input to the

next level.

The n-bit sum
n

∨
k=1 xk, can be computed by a NAND circuit comprising

p levels each of depth 2. Let level 0 be the inputs x1, . . . , xn; level i has 2p−i

outputs y1, . . . , yr, and level i + 1 computes y1 ∨ y2, y3 ∨ y4, . . . , yr−1 ∨ yr.
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Fig. 4.8. Matrix squaring

Each ∨ can be computed in two steps using three NAND gates, since x∨y =
NAND(NAND(x, x), NAND(y, y)).

In total we use 2p2 parallel steps and a network of size 5p23p−p22p NAND
gates, i.e., of 2(log2 n)2 depth and of 5n3 log2 n − 2n2 log2 n size.

We now consider the biological resources required to execute such a simula-
tion. Each gate is encoded as a single strand; in addition, at level 1 ≤ k ≤ D(S)
we require an additional strand per gate for removal of output sections. The to-
tal number of distinct strands required is therefore n(−1+2 logn2(−1+5kn)),
where k is a constant, representing the number of copies of a single strand
required to give a reasonable guarantee of correct operation.

4.9 P-RAM Simulation

We now describe, after [11], our DNA-based P-RAM simulation. At the coars-
est level of description, the method simply describes how any so-called P-RAM
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algorithm may be emulated in DNA. The P-RAM is a widely used model in the
design of efficient parallel algorithms, especially by the international commu-
nity of theorists working in the field. There are literally thousands of published
algorithms within this model which, often employing ingenious combinatorics,
are remarkably efficient. One of the attractions of our approach is that we can
call upon this vast published expertise. The immediate difficulty however is
that it is not clear how to directly emulate the P-RAM in DNA without in-
voking great intricacy and unrealistic bench chemistry. On the other hand, we
have been able to describe how a Boolean circuit may be efficiently emulated
in DNA. Although both models are universal (that is, are Turing-complete),
it is in general very difficult to “program” a Boolean circuit (that is, to de-
sign such a circuit to solve a specific problem) without a great degree of low
level intricacy and opacity. The reverse is true for the P-RAM which yields
a natural, high-level, programming environment. The benefit of our method-
ology is that we are able to describe a general method for compiling P-RAM
algorithms into Boolean Combinational Logic Networks.

Overall, then, we believe that we have a theoretical model which is easy
to program, may call upon a vast literature of efficient parallel algorithmic
design, and which (through Boolean circuit emulation) has the prospect of
emulation in DNA using relatively simple and clean processes. Moreover, and
very importantly, there is only a logarithmic loss in efficiency in the emulation
process. We now outline, in greater technical detail, how the emulation works.

The work presented in [8] gives a simulation of Boolean networks by DNA
algorithms that requires parallel time comparable to the network depth and
volume comparable to the network size. This follows the work of Ogihara and
Ray [113], in which they describe a Boolean circuit model that, within our
strong model of DNA computation [10], runs in parallel time proportionate
to the circuit size. Although we point out in [8] that a simple modification
to Ogihara and Ray’s simulation would achieve the same time complexity of
our simulation, we believe that the biological implementation of our model is
more straight forward. We justify this remark later.

The crucial extension of our simulation is presented in [9]: this presents
a full detailed translation from the high-level P-RAM algorithms into DNA,
the translation being accomplished by using a Boolean network representation
of the P-RAM algorithm as an intermediate stage. In total this translation
achieves the following performance: if A is a P-RAM algorithm using P (n)
processors, taking S(n) memory space, and taking T (n) time, then the to-
tal computation time of the DNA algorithm is bounded by O(T (n)logS(n)),
and the total volume of DNA used is O(P (n)T (n)S(n)logS(n)). As a conse-
quence this gives a direct translation from any NC algorithm into an effective
DNA algorithm. The simulation presented thereby moves the purely theo-
retical “in principle” result that DNA can realize NC “efficiently” into the
realm where such algorithms can be realized in DNA by a practical, universal
translation process. In [9] a formal definition of the low-level instruction set
available to each processor in the P-RAM is specified: this provides standard
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memory access facilities (load and store), basic arithmetic operations, and
conditional branching instructions. The compilation into DNA involves three
basic stages: compiling the P-RAM program down to a low-level sequence
of instructions; translating this program into a combinational logic network;
and, finally, encoding the actions of the resulting Boolean networks into DNA.
The actions performed in the second stage lie at the core of the translation.
For each processor invoked at the kth parallel step, there will be identical
(except for memory references) sequences of low-level instructions; the combi-
national logic block that simulates this (parallel) instruction takes as its input
all of the bits corresponding to the current state of the memory, and produces
as output the same number of bits representing the memory contents after
execution has completed. Effecting the necessary changes involves no more
than employing the required combinational logic network to simulate the ac-
tion of any low-level instruction. The main overhead in the simulation comes
from accessing a specific memory location, leading to the logS(n) slow-down.
All other operations can be simulated by well established combinational logic
methods without any loss in runtime. It is well known that the NAND func-
tion provides a complete basis for computation by itself; therefore we restrict
our model to the simulation of such gates. In fact, the realization in DNA of
this basis provides a far less complicated simulation than using other complete
bases.

We now describe the simulation in detail. This detailed work is due mainly
to the second author of [9], and is used with permission. We provide a full,
formal definition of the CREW P-RAM model that we will use. This de-
scription will consider processors, memory, the control regime, memory access
rules, and the processor instruction set. Finally we describe the complexity
measures that are of interest within this model.

The p processors, labelled P1, P2, . . . , Pp are identical, and can execute in-
structions from the set described below. Processors have a unique identifier:
that of Pi being i. The global common memory, M , consists of t locations
M1, M2, . . . , Mt, each of which is exactly r-bits long. The initial input data
consists of n items, which are assumed to be stored in locations M [1], . . . , M [n]
of the global memory. The main control program, C, sequentially executes in-
structions of the form

k; for x ∈ Lk par do instk(x)

Lk is a set of processor identifiers. For each processor Px in this list the instruc-
tion specified by instx is executed. Each processor executes the same sequence
of instructions, but on different memory locations. The control program lan-
guage augments the basic parallel operation command with the additional
control flow statements

for counter-name ← start-value step step-value to end-value do
instruction-sequence
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and

repeat repeat-value times
instruction-sequence

There is a restriction that the variables start-value, step-value, end-value, and
repeat-value are independent of the specific input data, i.e., are constants or
functions of the number of input items, n, but not of their specific values.

We allow each processor a local register (accumulator), ACC, for condi-
tional testing and storage of partial results. The instruction instx instantiated
by the control program at processor x is a numbered sequence of basic oper-
ations from the set of primitives listed in Table 4.4.

Table 4.4. Processor instruction set

Symbol Name Meaning

LDC x Load Constant Place the value x in ACC

LDA x Load (direct address) ACC := M [x]

LDI x Load (indirect address) ACC := M [M [x]]

STA x Store in memory (direct) M [x] := ACC; ACC is set to 0.

STI x Store in memory (indirect) M [M [x]] := ACC; ACC is set to 0

JUMP k Unconditional jump Jump to instruction k

JLT x, k Conditional jump If M [x] < 0 then jump to instruction k

JLE x, k Conditional jump If M [x] ≤ 0 then jump to instruction k

JGT x, k Conditional jump If M [x] > 0 then jump to instruction k

JGE x, k Conditional jump If M [x] ≥ 0 then jump to instruction k

JEQ x, k Conditional jump If M [x] = 0 then jump to instruction k

JNE x, k Conditional jump If M [x] �= 0 then jump to instruction k

ADD x Addition ACC := ACC + M [x]

SUB x Subtraction ACC := ACC − M [x]

MULT x Multiplication ACC := ACC ∗ M [x]

DIV x Integer Division ACC := ACC/M [x]

AND x Bitwise logical conjunction ACC := ACC ∧ M [x]

NEG Bitwise logical negation ACC := ¬ACC

HALT Halt Stop execution

We now consider the parallel complexity measures used within this model. Let
A be a P-RAM algorithm to compute some function f(t1, . . . , tn) employing
instructions from Table 4.4. The parallel runtime of A on < t1, . . . , tn >,
denoted T (t1, . . . , tn), is the number of calls of par do multiplied by the
worst case number of basic operations executed by a single processor during
any of these calls. This is, of course, typically an overestimate of the actual
parallel runtime; however, for the specific class of parallel algorithms with
which we are concerned this is not significant.

The parallel runtime of A on inputs of size n, denoted T (n), is T (n) =
max{t1,...,tn} T (t1, . . . , tn). The processor requirements of A on < t1, . . . , tn >,
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denoted by P (t1, . . . , tn), is the maximum size of | L | in an instruction for
x ∈ L par do . . . that is executed by A. The processor requirements in inputs
of size n, denoted P (n), is

P (n) = max{t1,...,tn} P (t1, . . . , tn).

Finally, the space required by A on < t1, . . . , tn >, denoted by S(t1, . . . , tn), is
the maximum value, s, such that M [s] is referenced during the computation
of A. The space required by A on inputs of size n, denoted by S(n), is S(n) =
max{t1,...,tn} S(t1, . . . , tn). It is assumed that S(n) ≥ P (n), i.e., that there is
a memory location that is associated with each processor activated.

Let f :N→N be some function over N. We say that a function Q :N→N
has parallel-time (space, processor) complexity f(n) is there exists a CREW P-
RAM algorithm computing Q and such that T (n) ≤ f(n)(S(n) ≤ f(n), P (n) ≤
f(n)).

We are particularly concerned with the complexity class of problems that
can be solved with parallel algorithms with a polynomial number of processors
and having polylogarithmic parallel runtime, i.e., the class of functions M for
which there is an algorithm A achieving T (n) ≤ (log n)k and P (n) ≤ nr for
some constants k and r; these form the complexity class NC of problems
regarded as having efficient parallel algorithms.

4.10 The Translation Process

We now provide a description of the translation from CREW P-RAM algo-
rithm to DNA. The input to the process is a CREW P-RAM program A,
which takes n input items, uses S(n) memory locations, employs P (n) differ-
ent processors, and has a total running time of T (n). The final output takes
the form of a DNA algorithm Q with the following characteristics: Q takes as
input an encoding of the initial input to A, returns as its output an encoding
of the final state of the S(n) memory locations after the execution of A, has a
total running time of O(T (n) log S(n)), and requires a total volume of DNA
O(T (n)P (n)S(n) log S(n)). The translation involves the following stages:

1. Translate the control program into a straight-line program
2. For each parallel processing instruction, construct a combinational circuit

to simulate it
3. Cascade the circuits generated in Stage 2
4. Translate the resulting circuit into a DNA algorithm

We first translate the control program to a straight-line program SA. SA con-
sists of a sequence of R(n) ≤ T (n) instructions, Ik(1 ≤ k ≤ R(n)), each of
which is of the form for x ∈ Lk par do instk(x). We “unwind” the control
program by replacing all loops involving m repetitions of an instruction se-
quence I by m copies I1, . . . , Im of I in sequence. Since the loops in the control
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program are dependent only on the number of inputs, this transformation can
always be carried out from just the value of n.

Recall that instk(x), the program instantiated on processor Px by in-
struction Ak of the (modified) control program, is a sequence of numbered
instructions drawn from Table 4.4. Furthermore, instk(x) and instk(y) are
identical except for specific references to memory locations. It follows that in
describing the translation to a combinational circuit, it suffices to describe the
process for a single processor: an identical translation will then apply for all
other processors working in parallel.

The simulation of the program running on a single processor lies at the
core of the combinational circuit translation, and requires some initial trans-
formation of the given program. To assist with this we employ the concept of
a program control graph.

Definition 2. Let P =< p1, p2, . . . , pt > be an ordered sequence of numbered
instructions from the set described in Table 4.4. The control graph, G(V, E)
of P is the directed graph with vertex set {1, 2, . . . , t} and edge set defined as
follows: there is an edge (v, w) directed from v to w if instruction pw imme-
diately follows instruction pv (note, “immediately follows” means w = v + 1
and pv is not an unconditional jump) or pv has the form JUMP w or JEQ
x, w. Notice that each vertex in G has either exactly one edge directed out of it
or, if the vertex corresponds to a conditional jump, exactly two edges directed
out of it. In the latter case, each vertex on a directed path from the source of
the branch corresponds to an instruction which would be executed only if the
condition determining the branch indicates so.

We impose one restriction on programs concerning the structure of their cor-
responding control graphs.

Definition 3. Let G(V, E) be the control graph of a program P . G is well
formed if, for any pair of directed cycles C =< c1, . . . , cr > and D =<
d1, . . . , ds > in G, it holds that {c1, . . . , cr} ⊂ {d1, . . . , ds}, {d1, . . . , ds} ⊂
{c1, . . . , cr}, or {c1, . . . , cr} ∩ {d1, . . . , ds} = ∅.

It is required of the control graphs resulting from programs that they be
well formed. Notice that the main property of well-formed graphs is that any
two loop structures are either completely disjoint or properly nested. The
next stage is to transform the control graph into a directed acyclic graph
which represents the same computation as the original graph. This can be
accomplished by unwinding loop structures in the same way as was done for
the main control program.

Let HP be the control graph that results after this process has been com-
pleted. Clearly HP is acyclic. Furthermore, if the program corresponding to
HP is executed, the changes made to the memory, M , are identical to those
that would be made by P . Finally, the number of vertices (corresponding to
the number of instructions in the equivalent program) is O(t), where t is the
worst case number of steps executed by P .
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The final stage is to reduce HP to a branch-free graph. Since cycles have
already been eliminated this involves merging conditional branches into a se-
quence of instructions. This is accomplished by the transformation illustrated
in Fig. 4.9. In this process both branches of the conditional are executed; how-
ever, only the branch for which the condition is true will affect the contents
of memory locations.

C1

 R

 s

Q

C1

 s

C1^Q

~C1^R

Fig. 4.9. Merging of conditional branches

If GP is the initial control graph of P and LP is the graph resulting after all
of the transformations above have been effected, then LP is called the linear
control graph of the program P .

The total effect of the transformation described above is to replace the
initial program by a sequence of instructions < Q1, Q2, . . . , Qm >, where m
is at most a constant factor larger than the runtime of P . Furthermore, each
instruction Qi has the form

< condition >< active − instruction >

where < condition > is a composition of a constant number of tests arising
from JEQ instructions, and < active − instruction > is any non-branching
instruction. The interpretation of this form is that < active − instruction >
changes the contents of a memory location if and only if < condition > is
true.

We then convert the linear control graph into a series of combinational
circuits. For each of the R(n) parallel processing (i.e., par do) instructions in
SA we construct a combinational circuit Ck with the following specification:
Ck takes as input r × S(n) Boolean values arranged in S(n) blocks of r bits
(we assume, without loss of generality, that r ≤ S(n)); the values in the ith
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block Bk−1(i) correspond to the contents of memory location M [i] prior to
the execution of Ik by SA; Ck produces as its output r×S(n) Boolean values
arranged as S(n) r-bit blocks, the values in the ith block Bk(i) corresponding
to the contents of memory location M [i] after the execution of Ik by SA.

As a consequence of the translation just described, the programs corre-
sponding to the actions of each processor working in parallel at some stage
of the computation consist of identical (except for memory references) lin-
ear control graphs. A typical linear graph consists of processing some values
stored in memory (using the accumulator), storing a value computed in mem-
ory, and repeating this sequence until its computation is completed. We can
thus simulate this process by building a circuit which consists of several levels
–each level mimics the calculations performed in the program and ends with
either a halt instruction or a store instruction. What has to be ensured in the
circuit simulation is that the store and halt instructions have an effect only if
their controlling conditions evaluate to true. Thus, let L =< l1, l2, . . . , lt > be
a sequence of instructions such that lt has the form < conditional > HALT ,
< conditional > STA, or < conditional > STI, and lk(1 ≤ k < t) is a load
or arithmetic instruction.

We now describe in detail the combinational circuit, CL, described above,
which carries out the following: CL has S(n) × r input bits that represent
the current contents of the S(n) r-bit words in the memory M ; CL outputs
S(n) × r bits that represent the contents of M after l1, . . . , lt have executed.
The output differs from the input only if the conditional qualifying lt evaluates
to true. In addition, CL employs the following Boolean variables which are
instantiated from the specific program instructions:

• cond: a single Boolean value which will compute to 1 if and only if the
conditional controlling lt is true

• ADDR[0..m − 1]: an m-bit representation of the address of a location in
memory (so that m = log2 S(n)).

We employ the following shorthand notations:

• bin(k) denotes the m-bit representation of k (0 ≤ k < S(n))
• If x is a single Boolean value and R[] =< r0, . . . , rk >, an ordered set of

Boolean values, the notation x < op > R[] (where op is a Binary boolean
operator) denotes the set of values R[x < op > r0, . . . , x < op > rk]

• M in
x [] denotes the r-bit content of M [x] before the start of a computation

(i.e., at input) and Mout
x [] denotes the contents of the same location after

the computation has finished.

In order to select data from memory we employ a module

FETCH : {0, 1}r×S(n) × {0, 1}m → {0, 1}r

FETCH takes as input the repreentation of M and an m-bit address, α, and
outputs the r bits in M in

α . The Boolean realization of FETCH(M(0, . . . , S(n−
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1)), ADDR[]) is given by

FETCH [0...r − 1] =
S(n)−1

∨
k=0 Mk[] ∧ (bin(k) ≡ ADDR[])

The total number of two-input gates required to realize this operation is

Size(FETCH) ≤ S(n) − 1 + S(n)(r + m) = O(S(n) log S(n))
Depth(FETCH) ≤ m + log(m) = O(log S(n)))

We now describe in detail the combinational circuit associated with each op-
eration in Table 4.4.

Load constant x
This merely involves transcribing the r-bit binary representation of the

constant x onto the r-wires representing the accumulator contents.
Size(LDC) = 0; Depth(LDC) = 0

Load direct x
This is equivalent to FETCH(M [], x) and transcribing the output to the

accumulator wires.
Size(LDA) = O(S(n) log S(n)); Depth(LDA) = O(log S(n))

Load indirect x
Indirect addressing involves two successive invocations of the FETCH

module, i.e., FETCH(M [], FETCH [M [], x)) and transcribing to the accu-
mulator.
Size(LDI) = O(S(n) log S(n)); Depth(LDI) = O(log S(n))

ADD x
ADD(ACC[], FETCH(M [], x)). An addition module, ADD(x, y) adds

two r-bit values and returns an r-bit value (overflow is assumed to cause
an error). A number of combinational circuits exist which achieve this in O(r)
gates and O(log r) depth, e.g., [91]. Hence, the dominant complexity contri-
bution arises from fetching the operand. In total we have
Size(ADD) = O(S(n) log S(n)); Depth(ADD) = O(log S(n))

SUB x
Similar to ADD using, for example, complement arithmetic.
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MULT x
MULT (ACC[], FETCH(M [], x)). A multiplication module, MULT (x, y)

takes two r-bit values and computes their produce (again, overflow is an error).
The technique described by Schonhage and Strassen [140] yields a combina-
tional circuit of size O(r log r log log r) and depth O(log r). Hence, the entire
operation, including the FETCH stage requires
Size(MULT ) = O(S(n) log S(n)); Depth(MULT ) = O(log S(n))

DIV x
DIV (ACC[], FETCH(M [], x)). Beame, Cook, and Hoover [26] describe a

division network which, when applied to r-bit operands has size O(r4 log3 r)
and depth O(log r). Thus,
Size(DIV ) = O(S(n) log S(n) + r4 log3 r); Depth(DIV ) = O(log S(n))

AND x
AND(ACC[], FETCH(M [], x)). The bitwise conjunction requires just r

gates and can be accomplished in depth 1. Thus,
Size(AND) = O(S(n) log S(n)); Depth(AND) = O(log S(n))

NEG
No references to memory are required, since this operation is performed

directly on the accumulator.
Size(NEG) = r; Depth(NEG) = 1

STA x
Copy the m-bit value of x onto ADDR[0, . . . , m−1]; then for each memory

location y, 0 ≤ y < S(n), compute the following:
Mout

y = (cond∨ (bin(y) ≡ ADD[]))∧M in
y ∨ (cond∧ (bin(y) ≡ ADDR[]))∧

ACC[]
For brevity we denote this function by STORE(ACC[], cond, ADDR[]).
STORE is a function
STORE : {0, 1}r×S(n) × {0, 1}r × {0, 1} × {0, 1}m → {0, 1}r×S(n)

Thus, a memory location is changed only if the condition governing the
instruction is true and the location specified matches the output address.
The condition governing the instruction involves only a constant number
of tests of particular memory locations and can therefore be computed in
O(S(n) log S(n)) gates and O(log S(n)) depth. We note that the update of all
S(n) memory locations can be carried out in parallel. Thus,
Size(STA) = S(n)((1 + m + m) + (1 + m + m) + 1) = O(S(n) log S(n));
Depth(STA) = O(logS(n))

STI x
This is identical to STA except that calculating ADDR[] = FETCH( M[],x)

is performed to determine the actual memory location to be used. In total,
this gives
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Size(STI) = O(S(n) log S(n)); Depth(STI) = O(log S(n))

We then cascade the R(n) combinational circuits produced in the preceding
construction stage (Fig. 4.10) and transform this resulting circuit into one
over the basis NAND. This completes the description of the translation of
the program of instructions to a combinational circuit.
In total, we have,

Theorem 1. Let A be a CREW P-RAM algorithm using P (n) processors and
S(n) memory locations (where S(n) ≥ P (n)) and taking T (n) parallel time.
Then there is a combinational logic circuit, C, computing exactly the same
function as A and satisfying

Size(C) = O(T (n)P (n)S(n) log S(n)); Depth(C) = O(T (n) log S(n)).

Proof. The modification of the control program allows A to be simulated by
at most R(n) blocks which simulate each parallel instantiation (c.f. Fig. 4.10).
In one block there are at most P (n) different circuits that update the S(n)
locations in the global memory. Each such circuit is a translation of a program
comprising O(Tk(n)) instructions, where Tk(n) is the runtime of the program
run on each processor during the kth cycle of the control program. Letting
Ck(n) denote the circuit simulating a program in the kth cycle, we have

Depth(C) ≤

R(n)∑
k=1 Depth(Ck(n)) ≤ O(log S(n))

R(n)∑
k=1 O(Tk(n))

= O(T (n) log S(n))

For the circuit size analysis,

Size(C) ≤ P (n)

R(n)∑
k=1 Size(Ck(n)) ≤ O(P (n)T (n)S(n) log S(n)). ��

Corollary 1: If A is an NC algorithm, i.e., requires O(nk) processors and
O(logr n) time, then the circuit generated by the translation above has poly-
nomially many gates and polylogarithmic depth.
Proof: Immediate from Theorem 1, given that S(n) must be polynomial in n.
��

4.11 Assessment

So far we have presented a detailed, full-scale translation from CREW P-
RAM algorithms to operations on DNA. The volume of DNA required and
the running time of the DNA realization are within a factor log S of the
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Fig. 4.10. Combinational circuit block simulation of control program
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best attainable (where S is the total space used by the P-RAM algorithm).
One consequence of this is that the class, NC, of efficient parallel algorithms
can be realized in DNA with only a small loss of speed and increase in size.
We note some further points of interest about our simulation process. First,
the translation from CREW P-RAM to DNA algorithm is an effective and
practical one. It thus follows that, in at least one computational paradigm,
the CREW P-RAM is an architecture that can be realized. This is despite
the fact, noted by many researchers, that the technological overheads implied
by a global common memory regime, to say nothing of the Concurrent Read
facility, which means that within traditional silicon approaches the CREW
P-RAM is not a constructible, scalable machine. In other words, our DNA
realization gives a feasible, concrete implementation of what has been regarded
as a purely abstract device. The second point concerns the nature of the
translation process itself. Although no published CREW P-RAM algorithms
are actually specified at the “machine code” level we regard as the basic
processor instruction set, it is quite clear that, starting from a (sequential)
program specified in an ersatz-ALGOL formalism, such algorithms could be
compiled into a program over the basic instruction set specified in Table 4.4.
It is also clear, however, that the process of translating the “assembly level”
program to a combinational circuit specification is a mechanical one, and,
furthermore, the creation of DNA strands from a given NAND circuit can
also be performed automatically. If we combine these chains of ideas, then we
see that a high − level CREW P-RAM to DNA compiler process is readily
available. We now give a worked example of this compilation process.

4.12 A Worked Example: The List Ranking Problem

We give, in this section, a worked example of the ideas presented above on a
typical CREW P-RAM algorithm. The example we choose is the list ranking
algorithm from [64]: given a list, L, of n = 2m elements, the problem is to
associate with each element k a value rank(k) corresponding to its distance
from the end of the list. For each list element k a location next(k) gives the
location of the next element in the list. For the last element, next(k) = k. We
describe the algorithm as described in [64]:

for all k ∈ L in parallel do
begin

P (k) := next(k);
if P (k) = k then

distance(k) := 1;
else

distance(k) := 0;
end

repeat log n times
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for all k ∈ L in parallel do
if P (k) = P (P (k)) then
begin

distance(k) := distance(k) + distance(P (k));
P (k) := P (P (k));

end;
for all k ∈ L in parallel do

rank(k) := distance(k);

Obviously this solves the list ranking problem in O(log n) parallel steps, using
n processors and O(n) memory locations. We consider the realization of this
for n = 2m. In the translation, a total of 5n memory locations are used, which
are laid out as follows:

M [1], . . . , M [n] hold the list pointers next(k)(1 ≤ k ≤ n)
M [n + 1], . . . , M [2n] hold the values P (k)
M [2n + 1], . . . , M [3n] hold distance(k)
M [3n + 1], . . . , M [4n] are used for temporary results
M [4n + 1], . . . , M [5n] hold the output values rank(k)

The unwound control program contains precisely m + 2 in parallel do in-
structions, the middle m of which are identical. For the first instruction we
have

for all k ∈ L in parallel do
begin

P (k) := next(k);
if P (k) = k then

distance(k) := 1;
else

distance(k) := 0;
end

In terms of the basic instruction set this translates to

1. LDA k
2. STA n + k /* P (k) := next(k)
3. LDC k
4. SUB n + k
5. STA 3n + k
6. JEQ 3n + k, 10 /* P (k) = k
7. LDC 1
8. STA 2n + k /* distance(k) := 1
9. JUMP 12
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10. LDC 0
11. STA 2n + k /* distance(k) := 0
12. HALT

(Note that the memory addresses given translate to fixed values for a fixed n
and processor identifier k).

The second (block of) m instructions follows:

for all k ∈ L in parallel do
if P (k) = P (P (k)) then
begin

distance(k) := distance(k) + distance(P (k));
P (k) := P (P (k));

end;

1. LDC n /* Base for P (k)
2. ADD n + k /* n + P (k), i.e. address of P (P (k))
3. STA 3n + k
4. LDI 3n + k /* P (P (k))
5. SUB n + k
6. STA 3n + k
7. JEQ 3n + k, 19 /* P (k) = P (P (k))
8. LDC 2n /* Base for distance(k)
9. ADD n + k /* 2n + P (k), i.e. address of distance(P (k))
10. STA 3n + k
11. LDI 3n + k
12. ADD 2n + k /* distance(P (k)) + distance(k)
13. STA 2n + k /* distance(k) := distance(k) + distance(P (k))
14. LDC n /* Base for P (k)
15. ADD n + k /* n + P (k), i.e. address of P (P (k))
16. STA 3n + k
17. LDI 3n + k
18. STA n + k /* P (k) := P (P (k))
19. HALT

Finally,

for all k ∈ L in parallel do
rank(k) := distance(k);
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1. LDA 2n + k
2. STA 4n + k /* rank(k) := distance(k)
3. HALT

Combinational circuit realization

First instruction block
Input: M [1], . . . , M [5n], each consisting of r bits
Output: M [1], . . . , M [5n] representing the contents of memory after the n
processors have executed the first instruction.

For each processor k the following combinational circuit is used:

ACC[] := FETCH(M [· · ·], bin(k));
M [· · ·] := STORE(ACC[], 1, bin(n + k));
ACC[] := bin(k);
ACC[] := SUB(ACC[], FETCH(M [· · ·], bin(n + k));
M [· · ·] := STORE(ACC[], 1, bin(3n + k));
ACC := FETCH(M [· · ·], bin(3n + k));

cond :=
r−1
∧

i=0 (ACC[i] ≡ 0);
ACC[] := bin(1);
M [· · ·] := STORE(ACC[], cond, bin(2n + k));
ACC[] := bin(0);
M [· · ·] := STORE(ACC[],¬cond, bin(2n + k));

Total size of first instruction = n × (3Size(FETCH) + 4Size(STORE) +
Size(SUB) + Size(cond− eval)) = O(n2 log n).
Depth is at most 3Depth(FETCH) + 4Depth(STORE) + Depth(SUB) +
Depth(cond − eval) = O(log n).

Second instruction block
Input: M [1], . . . , M [5n], each consisting of r bits
Output: M [1], . . . , M [5n] representing the contents of memory after the n
processors have executed the first instruction.

ACC[] := bin(n)
ACC[] := ADD(ACC[], FETCH(M [· · ·], bin(n + k)));
M [· · ·] := STORE(ACC[], 1, bin(3n + k));
ACC[] := FETCH(M [· · ·], FETCH(M [· · ·], bin(3n + k));
ACC[] := SUB(ACC[], FETCH(M [· · ·], bin(n + k));
M [· · ·] := STORE(ACC[], 1, bin(3n + k));
ACC[] := FETCH(M [· · ·], bin(3n + k));

cond := ¬(
r−1
∧

i=0 (ACC[i] ≡ 0));
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ACC[] := bin(2n);
ACC[] := ADD(ACC[], FETCH(M [· · ·], bin(n + k)));
M [· · ·] := STORE(ACC[], cond, bin(3n + k));
ACC[] := FETCH(M [· · ·], FETCH(M [· · ·], bin(3n + k)));
ACC[] := ADD(ACC[], FETCH(M [· · ·], bin(2n + k)));
M [· · ·] := STORE(ACC[], cond, bin(2n + k));
ACC[] := bin(n);
ACC[] := ADD(ACC[], FETCH(M [· · ·], bin(n + k)));
M [· · ·] := STORE(ACC[], cond, bin(3n + k));
ACC[] := FETCH(M [· · ·], FETCH(M [· · ·], bin(3n + k)));
M [· · ·] := STORE(ACC[], cond, bin(n + k));

Total size = n × (12Size(FETCH) + 6Size(STORE) + 4Size(ADD) +
Size(SUB) + Size(cond− eval)) = O(n2 log n).
Depth is at most (12Depth(FETCH)+6Depth(STORE)+4Depth(ADD)+
Depth(SUB) + Depth(cond)) = O(log n).

This instruction, however, is repeated log n times, giving a total size of
O((n log n)2) and depth O(log2n).

Final instruction
Input: M [1], . . . , M [5n], each consisting of r bits
Output: M [1], . . . , M [5n] representing the contents of memory after the n
processors have executed the first instruction.

ACC[] := FETCH(M [· · ·], bin(2n + k));
M [· · ·] := STORE(ACC[], 1, bin(4n + k));

Total size = n×(Size(FETCH)+Size(STORE)) = O(n2 log n). Total depth
= Depth(FETCH) + Depth(STORE) = O(log n).

In total we have a combinational circuit for list ranking which has size
O((n log n)2) and depth O(log2n).

4.13 Summary

In this chapter we have emphasized the rôle that complexity considerations
are likely to play in the identification of “killer applications” for DNA compu-
tation. We have examined how time complexities have been estimated within
the literature. We have shown that these are often likely to be inadequate
from a realistic point of view. In particular, many authors implicitly assume
that arbitrarily large numbers of laboratory assistants or robotic arms are
available for the mechanical handling of tubes of DNA. This has often led to
serious underestimates of the resources required to complete a computation.
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We have proposed a so-called strong model of DNA computation, which
we believe allows realistic assessment of the time complexities of algorithms
within it. This model, if the splice operation is trivially included, not only
provides realistic estimates of time complexities, but is also Turing-complete.
We have also demonstrated how existing models of computation (Boolean
circuits and the P-RAM) may be effectively simulated in DNA.

We believe that success in the search for “killer applications” is the only
means by which there will be sustained practical interest in DNA computation.
Success is only a likely outcome if DNA computations can be described that
will require computational resources of similar magnitude to those required by
conventional solutions. If, for example, we were to establish polylogarithmic
time computations using only a polynomial volume of DNA, then this would
be one scenario in which “killer applications” might well ensue. In this case,
we might imagine that the vast potential for parallelisation may finally be
effectively harnessed.

4.14 Bibliographical Notes

For an in-depth yet accessible treatment of computational complexity, the
reader is directed to [145]. This text includes short sections on the complexity
class NC and P-completeness. Detailed discussion of parallel computation
(with specific reference to the P-RAM) is collected in [66].



5

Physical Implementations

“No amount of experimentation can ever prove me right; a single
experiment can prove me wrong.” – Albert Einstein

5.1 Introduction

This chapter provides an introduction to the implementation of DNA com-
putations. We concentrate in particular on a full description of two filtering
models (Adleman’s and parallel filtering). We highlight the practical imple-
mentation problems inherent in all models, and suggest possible ways to allevi-
ate these. We also describe other key successful experimental implementations
of DNA-based computations.

5.2 Implementation of Basic Logical Elements

In 1982, Bennett [29] proposed the concept of a “Brownian computer” based
around the principle of reactant molecules touching, reacting, and effecting
state transitions due to their random Brownian motion. Bennett developed
this idea by suggesting that a Brownian Turing Machine could be built from a
macromolecule such as RNA. “Hypothetical enzymes”, one for each transition
rule, catalyze reactions between the RNA and chemicals in its environment,
transforming the RNA into its logical successor.

Conrad and Liberman developed this idea further in [46], in which the
authors describe parallels between physical and computational processes (for
example, biochemical reactions being employed to implement basic switching
circuits). They introduce the concept of molecular level “word processing” by
describing it in terms of transcription and translation of DNA, RNA process-
ing, and genetic regulation. However, the paper lacks a detailed description
of the biological mechanisms highlighted and their relationship with “tradi-
tional” computing. As the authors themselves acknowledge, “our aspiration is
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not to provide definitive answers . . . but rather to show that a number of seem-
ingly disparate questions must be connected to each other in a fundamental
way.” [46]

In [45], Conrad expanded on this work, showing how the information pro-
cessing capabilities of organic molecules may, in theory, be used in place of
digital switching components (Fig. 5.1a). Enzymes may cleave specific sub-
strates by severing covalent bonds within the target molecule. For example,
as we have seen, restriction endonucleases cleave strands of DNA at specific
points known as restriction sites. In doing so, the enzyme switches the state of
the substrate from one to another. Before this process can occur, a recognition
process must take place, where the enzyme distinguishes the substrate from
other, possibly similar molecules. This is achieved by virtue of what Conrad
refers to as the “lock-key” mechanism, whereby the complementary structures
of the enzyme and substrate fit together and the two molecules bind strongly
(Fig. 5.1b). This process may, in turn, be affected by the presence or absence
of ligands. Allosteric enzymes can exist in more than one conformation (or
“state”), depending on the presence or absence of a ligand. Therefore, in ad-
dition to the active site of an allosteric enzyme (the site where the substrate
reaction takes place) there exists a ligand binding site which, when occu-
pied, changes the conformation and hence the properties of the enzyme. This
gives an additional degree of control over the switching behavior of the entire
molecular complex.

In [17], Arkin and Ross show how various logic gates may be constructed
using the computational properties of enzymatic reaction mechanisms (also
see [34] for a review of this work). In [34], Bray also describes work [79, 80]
showing how chemical “neurons” may be constructed to form the building
blocks of logic gates.

5.3 Initial Set Construction Within Filtering Models

All filtering models use the same basic method for generating the initial set
of strands. An essential difficulty in all filtering models is that initial multi-
sets generally have a cardinality which is exponential in the problem size. It
would be too costly in time, therefore, to generate these individually. What
we do in practice is to construct an initial solution, or tube, containing a
polynomial number of distinct strands. The design of these strands ensures
that the exponentially large initial multi-sets of our model will be generated
automatically. The following paragraph describes this process in detail.

Consider an initial set of all elements of the form p1k1, p2k2, . . . , pnkn. This
may be constructed as follows. We generate an oligonucleotide (commonly
abbreviated to oligo) uniquely encoding each possible subsequence piki where
1 ≤ i ≤ n and 1 ≤ ki ≤ k. Embedded within the sequence representing pi is
our chosen restriction site. There are thus a polynomial number, nk, of distinct
oligos of this form. The task now is how to combine these to form the desired
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Substrate

Enzyme

Ligand

(a)

(b)

(c)

Fig. 5.1. (a) Components of enzymatic switch. (b) Enzyme recognizes substrate
and cleaves it. (c) Ligand binds to enzyme, changing its conformation; enzyme no
longer recognizes substrate

initial multi-set. This is achieved as follows: for each pair (piki, pi+1ki+1) we
construct an oligo which is the concatenation of the complement of the second
half of the oligo representing piki and the complement of the first half of the
oligo representing pi+1ki+1. We also construct oligos that are the complement
of the first half of the oligo representing p1k1 and the last half of the oligo
representing pnkn. There is therefore a total of 2nk + 1 oligos in solution.

The effect of adding these new oligos is that double-stranded DNA will be
formed in the tube and one strand in each will be an element of the desired
initial set. The new oligos have, through annealing, acted as “splints” to join
the first oligos in the desired sequences. These splints may then be removed
from solution (assuming that they are biotinylated).
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5.4 Adleman’s Implementation

Adleman utilized the incredible storage capacity of DNA to implement a
brute-force algorithm for the directed Hamiltonian Path Problem (HPP). Re-
call that the HPP involves finding a path through a graph that visits each
vertex exactly once. The instance of the HPP that Adleman solved is depicted
in Fig. 5.2, with the unique Hamiltonian Path (HP) highlighted by a dashed
line.

 7

 1  2

 3

 4

 5

 6

Fig. 5.2. Instance of the HPP solved by Adleman

Adleman’s approach was simple:

1. Generate strands encoding random paths such that the Hamiltonian Path
(HP) is represented with high probability. The quantities of DNA used
far exceeded those necessary for the small graph under consideration, so
it is likely that many strands encoding the HP were present.

2. Remove all strands that do not encode the HP.
3. Check that the remaining strands encode a solution to the HPP.

The individual steps were implemented as follows:
Stage 1: Each vertex and edge was assigned a distinct 20-mer sequence of

DNA (Fig. 5.3a). This implies that strands encoding a HP were of length 140
b.p. Sequences representing edges act as ‘splints’ between strands representing
their endpoints (Fig. 5.3b).

In formal terms, the sequence associated with an edge i → j is the 3’ 10-
mer of the sequence representing vi followed by the 5’ 10-mer of the sequence
representing vj . These oligonucleotides were then combined to form strands
encoding random paths through the graph. An (illegal) example path (v1 →
v2 → v3 → v4) is depicted in Fig. 5.4.

Fixed amounts (50 pmol) of each oligonucleotide were mixed together in
a single ligation reaction. At the end of this reaction, it is assumed that a
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V1 to V2 V1 to V4 V1 to V7

V2 to V3 V2 to V4

V3 to V2 V3 to V4

V4 to V3 V4 to V5

V5 to V2 V5 to V6

V6 to V2 V6 to V7
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Fig. 5.3. Adleman’s scheme for encoding paths - schematic representation of oligos
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Fig. 5.4. Example path created in Adleman’s scheme

strand representing the HP is present with high probability. This approach
solves the problem of generating an exponential number of different paths
using a polynomial number of initial oligonucleotides.
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Fig. 5.5. Unique Hamiltonian path
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Stage 2: PCR was first used to massively amplify the population of oligonu-
cleotides encoding paths starting at v1 and ending at v7. Next, strands that
do not encode paths containing exactly n visits were removed. The product of
the PCR amplification was run on an agarose gel to isolate strands of length
140 b.p. A series of affinity purification steps was then used to isolate strands
encoding paths that visited each vertex exactly once.

Stage 3: Graduated PCR was used to identify the unique HP that this
problem instance provides. For an n-vertex graph, we run n−1 PCR reactions,
with the strand representing v1 as the left primer and the complement of the
strand representing vi as the right primer in the ith lane. The presence of
molecules encoding the unique HP depicted in Fig. 5.2 should produce bands
of length 40, 60, 80, 100, 120, and 140 b.p. in lanes 1 through 6, respectively.
This is exactly what Adleman observed. The graduated PCR approach is
depicted in Fig. 5.6.

β λα δ

β λα δ β λα δ β λα δβ λα δ

many copies

Add primers

Short

Long

PCR

of strands

produces

Run strands through gel
to sort them on length

Fig. 5.6. Graduated PCR

Adleman’s experiment was remarkable in that it was the first to demonstrate
in the laboratory the feasibility of DNA computing. However, we note that
it was performed on a single problem instance with just one HP. No control
experiments were performed for cases without Hamiltonian Paths. The final
detection step is problematic, due to reliance on the error prone PCR proce-
dure. In addition, the use of affinity purification is also error prone, which may



5.5 Evaluation of Adleman’s Implementation 115

mean that the experiment will not successfully scale up. We consider these
issues in later sections.

5.5 Evaluation of Adleman’s Implementation

We describe later how the various multi-set operations described in the previ-
ous section may be realized thorough standard DNA manipulation techniques.
However, it is convenient at this point to emphasize two impediments to ef-
fective computation by this means. The first hampers the problem size that
might be effectively handled, and the second casts doubt on the potential for
biochemical success of the precise implementations that have been proposed.

Naturally, the strings making up the multi-sets are encoded in strands
of DNA in all the proposed implementations. Consider for a moment what
volume of DNA would be required for a typical NP -complete problem. The
algorithms mentioned earlier require just a polynomial number of DNA ma-
nipulation steps. For the NP -complete problems there is an immediate impli-
cation that an exponential number of parallel operations would be required
within the computation. This in turn implies that the tube of DNA must con-
tain a number of strands which is exponential in the problem size. Despite the
molecular dimensions of the strands, for only moderate problem sizes (say, n
∼ 20 for the Hamiltonian Path problem) the required volume of DNA would
make the experiments impractical. As Hartmanis points out in [76], if Adle-
man’s experiment were scaled up to 200 vertices the weight of DNA required
would exceed that of the earth. Mac Dónaill also presents an analysis of the
scalability of DNA computations in [53], as do Linial and Linial [97], Lo et al.
[101], and Bunow [38].

We note that [19] has described DNA algorithms which reduce the problem
just outlined; however, the “exponential curse” is inherent in the NP -complete
problems. There is the hope, as yet unrealized (despite the claims of [24])
that for problems in the complexity class P (i.e. those which can be solved
in sequential polynomial time) there may be DNA computations which only
employ polynomial sized volumes of DNA.

We now consider the potential for biochemical success that was mentioned
earlier. It is a common feature of all the early proposed implementations that
the biological operations to be used are assumed to be error free. An operation
central to and frequently employed in most models is the extraction of DNA
strands containing a certain sequence (known as removal by DNA hybridiza-
tion). The most important problem with this method is that it is not 100%
specific,1 and may at times inadvertently remove strands that do not contain
the specified sequence. Adleman did not encounter problems with extraction
because in his case only a few operations were required. However, for a large
problem instance, the number of extractions required may run into hundreds,

1 The actual specificity depends on the concentration of the reactants.
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or even thousands. For example, a particular DNA-based algorithm may rely
upon repeated “sifting” of a “soup” containing many strands, some encod-
ing legal solutions to the given problem, but most encoding illegal ones. At
each stage, we may wish to extract only strands that satisfy certain criteria
(i.e., they contain a certain sequence). Only strands that satisfy the criteria
at one stage go through to the next. At the end of the sifting process, we are
hopefully left only with strands that encode legal solutions, since they satisfy
all criteria. However, assuming 95% efficiency of the extraction process, after
100 extractions the probability of us being left with a soup containing (a) a
strand encoding a legal solution and (b) no strands encoding illegal solutions
is about 0.006. Repetitive extraction will not guarantee 100% efficiency, since
it is impossible to achieve the conditions whereby only correct hybridization
occurs. Furthermore, as the length of the DNA strands being used increases,
so does the probability of incorrect hybridization.

These criticisms have been borne out by recent attempts [86] to repeat
Adleman’s experiment. The researchers performed Adleman’s experiment
twice; once on the original graph as a positive control, and again on a graph
containing no Hamiltonian path as a negative control. The results obtained
were inconclusive. The researchers state that “at this time we have carried
out every step of Adleman’s experiment, but have not gotten an unambiguous
final result.”

Although attempts have been made to reduce errors by (1) simulation of
highly reliable purification using a sequence of imperfect operations [90] and
(2) application of PCR at various stages of the computation [32], it is clear
that reliance on affinity purification must be minimized or, ideally, removed
entirely. In [12], we describe one possible error-resistant model of DNA com-
putation that removes the need for affinity purification within the main body
of the computation. It is proposed that affinity purification be replaced by a
new enzymatic removal technique.

In [93], Kurtz et al. consider the effect of problem size on the initial con-
centrations of reactants and analyze the subsequent probability of a correct
solution being produced. They claim that, without periodic amplification of
the working solution, the concentration of strands drops exponentially with
time to “homeopathic levels.” One proposal to reduce strand loss during com-
putations is described in [100]. Rather than allowing strands to float free in
solution, the authors describe a surface-based approach, whereby strands are
immobilized by attachment to a surface (glass is used in the experiments
described in [100], although gold and silicon are other possible candidates).
The attachment chemistry is described in detail in [72]. This model is similar
to that described in [12], in that it involves selective destruction of specific
strands, although in this case Exonuclease is used to destroy unmarked rather
than marked strands. Preliminary experimental results suggest that strand
loss is indeed reduced, although the scalability of this approach is question-
able due to the two-dimensional nature of the surface.
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5.6 Implementation of the Parallel Filtering Model

Here we describe how how the set operations within the Parallel Filtering
Model described in Section 3.2 may be implemented.

Remove

remove(U, {Si}) is implemented as a composite operation, comprised of the
following:

• mark(U, S). This operation marks all strings in the set U which contains
at least one occurrence of the substring S.

• destroy(U). This operation removes all marked strings from U .

mark(U, S) is implemented by adding to U many copies of a primer corre-
sponding to S (Fig. 5.7b). This primer only anneals to single strands contain-
ing the subsequence S. We then add DNA polymerase to extend the primers
once they have annealed, making only the single strands containing S double
stranded (Fig. 5.7b).

Polymerase extends

(a)

(b)

(c)

(d)

Primer block

Restrict Restrict Restrict

Restriction site Target sequence

Fig. 5.7. Implementation of destroy

We may then destroy strands containing S by adding the appropriate restric-
tion enzyme. Double-stranded DNA (i.e. strands marked as containing S) is
cut at the restriction sites embedded within, single strands remaining intact
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(Fig. 5.7c). We may then remove all intact strands by separating on length us-
ing gel electrophoresis. However, this is not strictly necessary, and leaving the
fragmented strands in solution will not affect the operation of the algorithm.

Union

We may obtain the union of two or more tubes by simply mixing their contents
together, forming a single tube.

Copy

We obtain i “copies” of the set U by splitting U into i tubes of equal vol-
ume. We assume that, since the initial tube contains multiple copies of each
candidate strand, each tube will also contain many copies.

Select

We can easily detect remaining homogeneous DNA using PCR and then se-
quence strands to reveal the encoded solution to the given problem. One
problem with this method is that there are often multiple correct solutions
left in the soup which must be sequenced using nested PCR. This technique
is only useful when the final solution is known in advance. Also, the use of
PCR may introduce an unacceptable level of error in the read-out procedure.
A possible solution is to use cloning.

Although the initial tube contains multiple copies of each strand, after
many remove operations the volume of material may be depleted below an
acceptable empirical level. This difficulty can be avoided by periodic amplifi-
cation by PCR (this may also be performed after copy operations).

5.7 Advantages of Our Implementation

As we have shown, algorithms within our model perform successive “filter-
ing” operations, keeping good strands (i.e., strands encoding a legal solution
to the given problem) and destroying bad strands (i.e., those not doing so).
As long as the operations work correctly, the final set of strands will consist
only of good solutions. However, as we have already stated, errors can take
place. If either good strands are accidentally destroyed or bad strands are
left to survive through to the final set, the algorithm will fail. The main ad-
vantage of our model is that it doesn’t repeatedly use the notoriously error
prone separation by DNA hybridization method to extract strands contain-
ing a certain subsequence. Restriction enzymes are guaranteed [31, page 9]2

2 “New England Biolabs provides a color-coded 10X NEBuffer with each restriction
endonuclease to ensure optimal (100%) activity.”
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to cut any double-stranded DNA containing the appropriate restriction site,
whereas hybridization separation is never 100% efficient. Instead of extract-
ing most strands containing a certain subsequence we simply destroy them
with high probability, without harming those strands that do not contain the
subsequence. In reality, even if restriction enzymes have a small nonzero error
rate associated with them, we believe that it is far lower than that of hy-
bridization separation. Another advantage of our model is that it minimizes
physical manipulation of tubes during a computation. Biological operations
such as pipetting, filtering, and extraction lose a certain amount of mate-
rial along the way. As the number of operations increases, the material loss
rises and the probability of successful computation decays. Our implementa-
tion uses relatively benign physical manipulation, and avoids certain “lossy”
operations.

5.8 Experimental Investigations

In this section we describe the results of an experimental implementation of
the parallel filtering model. In particular, we concentrate on testing the effi-
ciency of the implementation of the remove operation, which is central to our
model. Although we have not yet advanced to the stage of fully implementing
an entire algorithm, the results obtained are promising. However, it is impor-
tant to note that the implementation of the remove operation is completely
separate in conceptual terms to the actual nature of the model. The success
or failure of any particular implementation does not detract in any way from
the power of the model.

Experimental objectives

The primary objectives of the experiments detailed in this section are as
follows:

1. To first ascertain optimal experimental conditions.
2. To test the implementation of the remove operation. We do this by per-

forming a sequence of removal experiments, comprised of primer anneal-
ing, primer extension, and restriction.

Experimental overview

The primary objectives of the experiments detailed in this section are as
follows:

1. To first ascertain optimal experimental conditions.
2. To test the implementation of the remove operation. We do this by per-

forming a sequence of removal experiments, comprised of primer anneal-
ing, primer extension, and restriction.
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3. To test the error-resistance of a sequence of removal operations that would
occur during an actual algorithmic implementation.

Encoding colorings in DNA

We construct an initial library of (not necessarily legal) colorings in the follow-
ing manner. For each vertex vi ∈ V we synthesize a single oligonucleotide (or
oligo) to represent each of vi = red, vi = green, and vi = blue. The structure
of these strands is depicted in Fig. 5.8.

Binding site (20 b.p.)

Restriction site (4 b.p.) Colour site (6 b.p.)

Fig. 5.8. Oligonucleotide structure

With reference to Fig. 5.8, each oligo (apart from those representing v1 and
v8) is composed of the following:

1. a unique 20-base binding site, within which is embedded a 4-base restric-
tion site, GATC

2. a 6-base color identification site. The sequences chosen to represent “red”,
“green”, and “blue” are AAAAAA, GGGGGG, and CCCCCC respec-
tively

3. a unique 20-base binding site

Oligos representing v1 and v8 are 34 bases long (8-base binding section, 6-
base color section and 20-base binding section). The initial sequences chosen
to represent each vertex coloring are listed in Table 5.1. Note that restriction
sites are underlined (e.g., GATC) and color sequences are depicted in bold.
The melting temperature (Tm) of each strand is specified in the final column.

All sequences described here were originally designed by hand. This pro-
cess is laborious and prone to error, and several researchers have described
subsequent attempts to automate the sequence design process. The sequences
were then checked with the Microgenie [127] package to check for common
subsequences and hairpin loops.

We now describe how the initial library is constructed from these oligos.
In order to reduce to a minimum the number of oligos to be synthesized, we
reject the splinting method described in [3, 98] in favor of an overlapping
approach.
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Table 5.1. Sequences chosen to represent vertex/color combinations

Coloring Sequence Tm

v1 = red GCTCTGCTAAAAAATCTTGATTTCACAGCATGGT 74.1
v1 = green GCTCTGCTGGGGGGTCTTGATTTCACAGCATGGT 83.1
v1 = blue GCTCTGCTCCCCCCTCTTGATTTCACAGCATGGT 82.5

v2 = red CGTCATAGGATCACCATGCTTTTTTTACCATGCTGTGAAATCAAGA 81.5
v2 = green CGTCATAGGATCACCATGCTCCCCCCACCATGCTGTGAAATCAAGA 88.4
v2 = blue CGTCATAGGATCACCATGCTGGGGGGACCATGCTGTGAAATCAAGA 88.4

v3 = red AGCATGGTGATCCTATGACGAAAAAATGCTGCTAAGACGAAGAGTT 80.9
v3 = green AGCATGGTGATCCTATGACGGGGGGGTGCTGCTAAGACGAAGAGTT 86.6
v3 = blue AGCATGGTGATCCTATGACGCCCCCCTGCTGCTAAGACGAAGAGTT 86.7

v4 = red GTAGGTGTGATCCAGTGGTTTTTTTTAACTCTTCGTCTTAGCAGCA 79.2
v4 = green GTAGGTGTGATCCAGTGGTTCCCCCCAACTCTTCGTCTTAGCAGCA 86.0
v4 = blue GTAGGTGTGATCCAGTGGTTGGGGGGAACTCTTCGTCTTAGCAGCA 86.0

v5 = red AACCACTGGATCACACCTACAAAAAAGGTCTTCGGCGGCAATCTAC 83.7
v5 = green AACCACTGGATCACACCTACGGGGGGGGTCTTCGGCGGCAATCTAC 89.9
v5 = blue AACCACTGGATCACACCTACCCCCCCGGTCTTCGGCGGCAATCTAC 89.9

v6 = red GTAGGTGTGATCCAGTGGTTTTTTTTGTAGATTGCCGCCGAAGACC 83.8
v6 = green GTAGGTGTGATCCAGTGGTTCCCCCCGTAGATTGCCGCCGAAGACC 89.5
v6 = blue GTAGGTGTGATCCAGTGGTTGGGGGGGTAGATTGCCGCCGAAGACC 89.5

v7 = red AACCACTGGATCACACCTACAAAAAACACTGACAAGACCTTTGCTT 80.8
v7 = green AACCACTGGATCACACCTACGGGGGGCACTGACAAGACCTTTGCTT 87.4
v7 = blue AACCACTGGATCACACCTACCCCCCCCACTGACAAGACCTTTGCTT 86.8

v8 = red GCGGAATTCCTCTGCTGATCTTTTTTAAGCAAAGGTCTTGTCAGTG 81.9
v8 = green GCGGAATTCCTCTGCTGATCCCCCCCAAGCAAAGGTCTTGTCAGTG 89.1
v8 = blue GCGGAATTCCTCTGCTGATCGGGGGGAAGCAAAGGTCTTGTCAGTG 89.1

8

3’
5’

5’
3’

V1 3V 5V 7V

V2 V4 V6 V

Fig. 5.9. Library construction

Sequences representing odd-numbered vertices run in the 3’ → 5’ direction. Se-
quences representing even-numbered vertices run in the 5’ → 3’ direction (see
Fig. 5.9). We now describe the structure of the binding sections of strands rep-
resenting even-numbered vertices. The “left-hand” binding section of strands
representing vn (where n is even) is the complement of the “right-hand” bind-
ing section of strands representing vn−1. Similarly, the “right-hand” binding
section of strands representing vn is the “left-hand” binding section of strands
representing vn+1.

We also construct a single biotinylated oligo, corresponding to the com-
plement of the “right-hand” binding section of strands representing v8. This
allows us to purify strands encoding colorings away from the splint strands.
The use of hybridization extraction does not cause a problem at this stage,
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since the process is performed only once, rather than repeatedly during the
main body of a computation.

�
�
�
� �

�
�
�

�
�
�
�

V2 V4 V6 V8

3’ 5’
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Fig. 5.10. Structure of strands in initial library

We then pour all oligos into solution. When all oligos have annealed we ex-
pect to obtain many double strands of the form depicted in Fig. 5.9. Vertex
and color sections each occupy a distinct subsection of each strand. It is clear
from the structure of these strands that the sequence encoding a particular
vertex/color combination depends not only on the vertex in question, but on
whether or not the vertex number is odd or even. For example, sections col-
oring v1 “red” have the sequence AAAAAA, as expected. However, due to
the overlapping nature of the strand construction technique, sections coloring
v2 have the sequence TTTTTT . This minor complication does not present a
problem and, knowing the sequence assigned to each vertex/color combina-
tion, it is a trivial task to derive the sequences of the appropriate primer. The
primer sequences are listed in Table 5.2.

Materials and methods

We now describe in detail the 32 experiments carried out during this particular
phase of the project. A summary of these is given in Table 5.3. The results
of these experiments are listed in the next section; here we describe only the
materials and methods used. We represent the order of experimental execution
in Fig. 5.11. Each process box is labelled with the numbers of the experiments
carried out at that stage. Note that the only cycle in the flowchart occurs
while attempting to remove strands containing a certain sequence. This is
necessitated by the need for control and optimization experiments in order to
establish optimal (or near-optimal) experimental conditions.

Experiment 1. Oligos and reagents

All the tile oligos were resuspended to 100 pmoles/µl in distilled water, then
diluted to produce two mastermixes, the first containing all the oligos and the
other containing only red oligos. The final concentration in each case was 2.5
pmoles each oligo/µl. The primer oligos were re-suspended to 100 pmoles/µl
stocks and also diluted to 30 pmoles/µl PCR working stock. The biotinylated
primer (v8) was re-suspended to 200 pmoles/µl and stored in 20 µl single use
aliquots. All oligos were stored at -20◦C. A 5xPolymerase/Ligase buffer was
made up (based on the requirements for second strand cDNA synthesis).
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Fig. 5.11. Flowchart depicting experimental cycle
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Table 5.2. Sequences of primers

Primer Sequence Tm

v1 = red GCTCTGCTAAAAAATCTT 51.1
v1 = green GCTCTGCTGGGGGGTCT 66.8
v1 = blue GCTCTGCTCCCCCCTCTT 65.8

v2 = red AGCATGGTAAAAAAAGCA 55.8
v2 = green AGCATGGTGGGGGGAGC 71.5
v2 = blue AGCATGGTCCCCCCAGCA 71.5

v3 = red CTATGACGAAAAAATGCT 52.6
v3 = green CTATGACGGGGGGGTGCT 67.2
v3 = blue CTATGACGCCCCCCTGCT 67.4

v4 = red GAAGAGTTAAAAAAAACC 47.7
v4 = green GAAGAGTTGGGGGGAACC 63.3
v4 = blue GAAGAGTTCCCCCCAACC 63.3

v5 = red ACACCTACAAAAAAGGTC 51.1
v5 = green ACACCTACGGGGGGGGTC 68.2
v5 = blue ACACCTACCCCCCCGGTC 49.3

v6 = red CAATCTACAAAAAAAACC 49.3
v6 = green CAATCTACGGGGGGAACC 64.0
v6 = blue CAATCTACCCCCCCAACC 63.9

v7 = red ACACCTACAAAAAACACT 48.7
v7 = green ACACCTACGGGGGGCACT 66.7
v7 = blue ACACCTACCCCCCCCACT 65.4

v8 = red CTTTGCTTAAAAAAGATC 48.9
v8 = green CTTTGCTTGGGGGGGAT 66.6
v8 = blue CTTTGCTTCCCCCCGAT 66.7

Experiment 2. Library construction

Two hybridization reactions were set up, one containing a full set of coloring
oligos and the other a control containing only red coloring oligos. The prod-
ucts were labelled ALL and RED.

Experiment 3. Amplification of template ALL

Hybridization product ALL was amplified by PCR between v8 and a mixture
of the three v1 primers. The primary aim was to generate a working stock con-
taining a mixed population of colorings. The amplification was also used to
confirm that the oligos had annealed correctly and that the polymerase/ligase
step had repaired the gaps between oligos to produce double-stranded tile
chains of the correct length. PCR template concentration and MgCl2 concen-
trations were titrated in order to optimize PCR conditions.
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Table 5.3. Summary of experimental objectives

No. Summary of experimental objective

1 Resuspension of oligos
2 Creation of initial library
3 Amplification of initial library
4 Purification of product of Experiment 3
5 Check to ensure correct hybridization
6 Test of specificity of Experiment 5
7–8 Cloning and sequencing to ensure correct library construction
9 Removal experiment 1
10 Amplification and purification of test library subset
11 Removal experiment 2
12 Removal experiment 3
13 Test of ability of Sau3A to digest dsDNA
14–15 Control experiments using MboI rather than Sau3A
16 Removal experiment 4
17 Removal experiment 5
18 Removal experiment 6
19 Removal experiment using Klenow (7)
20 Removal experiment 8
21 Removal experiment 9
22 Test of multiple removals
23–24 Oligo redesign
25 New initial library construction
26–29 New initial library amplification
30–31 PCR control experiments for new library
32 Removal experiment 10

Experiment 4. Purification of v1–v8 PCR product

The 10 best samples producing bands in Experiment 3 were pooled, and gel
purified on 2% agarose. The ∼200 b.p. fragment was extracted using the Qi-
agen gel extraction kit. The PCR product was ligated into a T cloning vector
and used to transform stored competent bacteria. Several thousand clones
were produced. 12 were grown, miniprepped, and sequenced (Experiments 7
and 8).

Experiment 5. PCR between v2 and v8

The aim was to check that all three colorings of v2 were present in the am-
plified chain produced in Experiment 3. This was done simply by using v8

and either red, green, or blue specific v2 primers in a standard detection PCR
reaction.
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Experiment 6. PCR from RED template (from Experiment 2)

This control experiment was set up to check the specificity of the PCR detec-
tion step (to make sure the color-specific primers did not cross-react, giving
false positive results). The RED hybridization product from Experiment 2
was diluted 1/10 and color-specific detection PCRs set up for v1, v2, v3, and
v4.

Experiments 7 and 8. Sequencing of clones from Experiment 4

Eight clones were sequenced using either universal or reverse primers.

Experiment 9. Exclusion experiment 1

This initial control experiment was designed to test the ability of the proposed
Taq-based primer extension/Sau3A digestion method of excluding specific se-
quences from a mixed population of chains. Template prepared in Experiment
4 was bound to Dynabeads, denatured and then split into two. One half was
treated with the intention of excluding all but one vertex coloring, the other
was used as a control and taken through the procedure without adding any
exclusion primers. Following Sau3A digestion, the surviving DNA was har-
vested from the beads by EcoR1 digestion. Detection PCR reactions were set
up to detect specific vertex sequences within each of the samples. The un-
treated half was intended as a positive control for the detection PCR step.

Experiment 10. Amplification and purification of the RED template

A red-only template was prepared by PCR from the RED hybridization prod-
uct (Experiment 2) using v1 = red and v8 primers. The PCR product was gel
purified and extracted using a Qiagen gel extraction kit.

Experiment 11. Exclusion experiment 2

This was a repeat of Experiment 9 with various modifications intended to
increase the stringency of the exclusion step (amount of template reduced,
primer concentration increased, annealing temperature reduced, number of
cycles increased). The RED control template was also taken through the pro-
cedure as a PCR specificity control.

Experiment 12. Exclusion experiment 3

Conditions were modified further to favor exclusion. An additional control
was included to test the ability of the Sau3A to destroy double-stranded
sequences.
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This sample was bound to the Dynabeads, washed but not denatured, and
then taken through the procedure as double-stranded template, which should
have been completely destroyed by the exclusion procedure.

Experiment 13. Sau3A control

This control was used to assess the ability of Sau3A to digest double-stranded
DNA. Serial dilutions were made from template ALL. 1 µl of each dilution
was digested using 10U Sau3A at 37◦C for one hour, in a total volume of
10 µl. 1 µl of each digest, and undigested controls, were used as template in
standard v1–v8 detection PCR reactions.

Experiments 14 and 15. Control experiments using Mbo1 to digest
targeted sequences

Experiment 13 was repeated using Mbo1 (a Sau3A isoschizomer that has the
same specificity for double stranded DNA).

Experiment 16. Exclusion experiment 4

Experiment 12 was repeated, substituting Mbo1 for Sau3A.

Experiment 17. Exclusion experiment 5

Fresh v1–v8 template was prepared and purified, then used in an exclusion
experiment as in Experiment 12. Digestion was carried out overnight using
50U enzyme.

Experiment 18. Exclusion experiment 6

Template prepared in Experiment 17 was diluted 1/10 and 1 µl bound to
Dynabeads, denatured, and washed. A v2 exclusion was set up, using Taq in
the primer extension reaction as usual. The beads were re-suspended every 10
cycles and a 3 µl aliquot of beads removed at roughly 20 cycle intervals, up
to a maximum of 85 cycles. Mbo1 digestion of each aliquot was carried out
overnight at 37◦C in a rotating oven (to keep the beads in suspension) using
50U (a huge excess) of enzyme. v2 detection PCRs were set up from each of
the digested samples.

Experiment 19. Exclusion experiment using Klenow

In this experiment Klenow was substituted for Taq in the primer extension
step. The idea was to overcome the problem of the beads settling out while
cycling in the PCR block, which may have accounted for the inefficiency of
the reaction. To do this the tubes were incubated in a 37◦C rotating oven for
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three hours. Detection PCR was carried out as normal and the products run
out alongside the samples from Experiment 18.

Experiment 20. Exclusion experiment 8

This was a Taq-based exclusion using modified cycling conditions. The ALL
template from Experiment 17 was diluted 1/10 and bound to the Dynabeads,
denatured, washed, and split into three. Three single exclusion reactions were
set up, one each for the v2 colors (in this way the three templates acted as
PCR controls for each other).

Experiment 21. Exclusion experiment 9

Experiment 20 was repeated with modifications to primer extension condi-
tions aiming to favor the annealing of red primers.

Experiment 22. Multiple tile exclusion

This was the first attempt to exclude more than one tile at a time. It was
thought that expanding the experiment in this way may increase the efficiency
of the exclusion reactions by reducing the overall level of template available
at the detection PCR step.

Experiments 23 and 24. Oligo redesign

New oligos were designed to replace the v3 oligos in the existing chain. By
slotting in oligos with modified characteristics, it was hoped that the principle
of the exclusion technique could be shown to work (even if it was not possible
to execute a full algorithm). The basic design features of the new oligos were
as follows:

• The regions of overlap with v2 and v4 were conserved so that the new
oligos could be incorporated into the old chain.

• The color signatures were increased from six to ten nucleotides in length
to increase stability.

• The three color sequences shared no base homology, i.e., they were different
at each individual base.

• All the oligos were checked for runs of bases, homologies, hairpins, etc.
• Primer Tm were as close as possible to each other (so that primers could

be used in combination under optimal conditions), and all around 60◦C.
This was achieved by maintaining a GC ratio of 50% for each primer.

The new sequences are described later in this section.
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Experiment 25. New full-length chain preparation

Three new full-length chains were prepared containing either red, green, or
blue new v3 in a backbone of the original red tiles v1, v2, v4, v7, and v8.
By omitting the green and blue tiles in the backbone of the molecule we
hoped to avoid any interactions between blue CCCCCC and green GGGGGG
sequences, which could lead to the formation of hairpins in the full-length
molecule. The construction method was exactly as in Experiment 2.

Experiments 26 to 29. New chain amplification

Each of the new chains were amplified and purified separately to produce
both biotinylated and non-biotinylated products. The non-biotinylated prod-
ucts were cloned for sequencing (but unfortunately the sequencing reactions
failed and there was not enough time to repeat them). The biotinylated prod-
ucts were used in the control and exclusion optimization experiments.

Experiments 30 and 31. PCR control experiments for the new tile
chains

The three new tile chains containing either the red, green, or blue v3 were
assessed separately. Serial dilutions were made from each template (down to
a dilution of 10:8). PCR reactions were then set up in order to determine
the limit of detection for each template. For subsequent control and exclusion
reactions these templates were used at a concentration approximately ten-
fold above the limit of detection. It was hoped that by balancing the initial
amount of template used in the experiments, any partial exclusion (as seen
previously) would be sufficient to reduce the level of template below the limit
of PCR detection, giving a negative result (i.e., showing that exclusion had
been successful). PCR conditions were optimized to ensure that there was no
cross reaction between the new colored sequences, and Mbo1 digestion times
were assessed to ensure complete digestion of double-stranded DNA at these
concentrations.

Experiment 32. Final exclusion experiment

Red, green, and blue templates were mixed in roughly equal proportions
(based on their PCR detection limit in Experiment 30). The mixed template
was bound to the Dynabeads and prepared in bulk before splitting into four
tubes. Red, green, and blue v3 exclusions were set up in separate reactions,
alongside a no-exclusion control. Following Mbob digestion, detection PCR
reactions were set up to determine the relative levels of each v3 in each of the
exclusion samples and control.
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Results obtained

Experiment 3. The major product of ∼200 b.p. was detectable at all tem-
plate concentrations, though very faint at 1/1000 dilution. MgCl2 concentra-
tion had very little effect on PCR efficiency. Optimal conditions appeared to
be at 2mM MgCl2 using the template diluted to 1/10. In all cases the product
appeared slightly smaller than expected, though it was not clear if this was a
gel artifact or a problem with the library oligo assembly.

Experiment 5. All three vertices were found to be represented in the chain
population (assuming no cross reaction had occurred)

Experiment 6. The PCR products were faint but in each case appeared to
be color-specific. There was also a stepwise reduction in the size of the PCR
product from v1 through v4, showing that the PCR reactions were vertex-
specific and that the majority of colorings had assembled in the correct order.

Experiments 7 and 8. It was clear that there was fairly high sequence vari-
ability among the clones. They showed a number of vertex assembly patterns
and chain lengths. Some could be explained by PCR mispriming during the
chain amplification step, yielding products with a v1 sequence at both ends
(these products would not cause problems in the exclusion experiments since
they were not biotinylated, would not bind to the Dynabeads, and would
be removed during the washing step). One feature common to all the clones
was the absence of sequences representing v5 and v6. Looking at the oligo se-
quences it was clear that the problem was due to identical overlapping regions
between v4 and v5, and v6 and v7, making two chains possible, the shorter
of which seemed to form predominantly. In this small selection of clones it
looked like the vertex colorings were represented equally among the chains.

Experiment 9. The detection reactions showed that the PCR products from
each sample were of equal intensity for each vertex tested, showing that ex-
clusion under these conditions had failed.

Experiment 11. The PCR results showed that the detection step was spe-
cific, but that the exclusion steps had not reduced the amount of targeted
sequence.

Experiment 12. Detection PCR results showed that the PCR was specific
(RED control), but that the exclusion steps had not worked, and also that
Sau3A had failed to destroy the double-stranded control. This implied that
the exclusion experiments were failing due to incomplete Sau3A digestion of
the marked sequence.
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Experiment 13. Comparisons of the two sets of samples showed that di-
gestion with Sau3A made no difference to the detection limit of the PCR
reactions. As a further control, the products of the above reactions were gel
purified and split in two. One half was digested with Sau3A and visualized
alongside the other (undigested) control on 2% agarose. The undigested DNA
ran as a distinct band, whereas the digested half appeared as a high molecular
weight smear.

Experiments 14 and 15. An overnight 37◦C digestion using 20U of enzyme
was found to completely destroy the template (i.e., to reduce the level of tem-
plate below the limit of PCR detection).

Experiment 16. Nothing could be concluded from this set of reactions since
the positive PCR controls failed.

Experiment 17. The positive and negative detection PCR controls worked,
but all other reactions failed. The problem seemed to be due to inefficient
harvesting of the excluded template from the Dynabeads prior to detection
PCR. To get round this problem an unbiotinylated v8 primer was ordered.
Using this primer, detection PCRs could be set up directly from templates
bound to the Dynabeads.

Experiment 18. The results of this experiment gave the first evidence that
the exclusion method could work. The intensity of the specific PCR product
band decreased with increased number of exclusion cycles, although the ex-
clusion never reached completion. The template was still detectable after 85
cycles of primer extension.

Experiment 19. The use of Klenow produced the same effect as ∼30 to
40 cycles of Taq-based exclusion (i.e., exclusion was not complete), showing
that Klenow offered no advantage over Taq. Detection PCR showed specific
exclusion of v2 = green and v2 = blue sequences, but not v2 = red. The gel
is depicted in Fig. 5.12. A summarized interpretation of this gel is presented
in Table 5.4.
Lanes 1 to 3 show the result of the removal of strands encoding v2 = red. Lane
1, corresponding to v2 = red should be empty, but a faint band is visible. Lanes
2 and 3, corresponding to v2 = green and v2 = blue primers respectively con-
tain normal length product, showing that strands not containing the sequence
v2 = red were not removed.

We believe that the incomplete removal of v2 = red strands is due to the
sequence chosen to represent red (AAAAAA). Because adenine only forms
two hydrogen bonds with thymine, the optimum annealing temperature be-
tween strands and red primers is lower than that for green (CCCCCC) and
blue (GGGGGG) primers. We believe a simple modification to the encoding
sequence (described later) will solve this problem.
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Fig. 5.12. Visualization of gel resulting from Experiment 20

Lanes 4 to 6 show the result of the removal of strands encoding v2 = green.
Lane 5, corresponding to the v2 = green primer, is empty, showing that no
strands containing that sequence were present. Lanes 4 and 6, corresponding
to v2 = red and v2 = blue primers respectively contain normal length prod-
uct, showing that strands not containing the sequence v2 = green were not
removed.

Lanes 7 to 9 show the result of the removal of strands encoding v2 = blue.
Lane 9, corresponding to the v2 = blue primer is empty, showing that no
strands containing that sequence were present. Lanes 7 and 8, corresponding to
v2 = red and v2 = green primers respectively contain normal length product,
showing that strands not containing the sequence v2 = blue were not removed.

The streaks visible at 74 and 18 b.p. are due to the presence of primer
dimers and free primers respectively.

Table 5.4. Interpretation of Fig. 5.12

Lane Excluded PCR Primer Result

1 v2 = red +
2 v2 = red v2 = green +
3 v2 = blue +

4 v2 = red +
5 v2 = green v2 = green -
6 v2 = blue +

7 v2 = red +
8 v2 = blue v2 = green +
9 v2 = blue -

10 None v2 = red -
11 (PCR -ve v2 = green -
12 control) v2 = blue -
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Experiment 21. Evidence of exclusion was seen again, but in all cases it was
incomplete.

Experiment 22. There was evidence of specific exclusion (the intensity of
targeted sequences reduced) but the process was incomplete. There seemed
to be a basic problem with the method in that it used the enzymatic removal
process to target and destroy specific sequences, followed by an incredibly
sensitive technique to detect them.

Experiment 32. The PCR failed to produce any product from any of the
samples, including the positive control. This was probably due to loss of the
template during the washing steps, reducing its concentration below the limit
of detection.

Discussion

It is perhaps useful at this point to note that this implementation, first pro-
posed in [12], established for the first time the “destructive” DNA-based al-
gorithmic paradigm, which has been subsequently used in several ground-
breaking papers [58, 99].

In [141] Seeman et al. describe the potential pitfalls that may confront
experimentalists working on DNA computation. In this section we describe
in a similar fashion the lessons to be drawn from the experimental investiga-
tions just described. We hope that other experimentalists in the field may be
made aware of various subtle aspects of the implementation of models of DNA
computation. We have found that the requirements of DNA-based algorithmic
experiments are often more strict than those of “traditional” investigations
in molecular biology. For example, it is rare that molecular biologists are
required to sequence a heterogeneous population of DNA strands; yet, for
any nontrivial problem, this task is inevitably required as the final step of
the implementation of a DNA-based algorithm. We hope that these (often
non-obvious) impediments to efficient and error-resistant implementation of
models of DNA computation will be made apparent in the following sections.

Ensure appropriate control and optimization experiments are
performed

We quickly found that a major component of the work was comprised of
finding optimal experimental conditions. Factors to be taken into account
included strand concentration, salt concentration, restriction enzyme concen-
tration, annealing temperature, and number of cycles. Due to the unusual
nature of the experiments, we found that the system was far more sensitive
to experimental conditions than is normally the case.



134 5 Physical Implementations

We also carried out extensive control experiments to ensure the specificity
of the PCR detection step (i.e., to ensure that strands were not removed
without this being done explicitly). Also, control experiments indicated the
inefficiency of the Sau3A restriction enzyme that was originally used, though
an isoschizomer, MboI, worked well.

Ensure that the initial library is constructed cleanly before
proceeding

A fundamental prerequisite for correct algorithmic implementation is that
the initial library of strands be constructed as expected. This is especially
important for algorithms within filtering models, since we must be absolutely
sure that every possible solution to the given problem is represented as a
strand. While describing their attempt to recreate Adleman’s experiment,
Kaplan et al. [86] acknowledge the difficulty of obtaining clean generation of
the initial library.

There are several potential problems inherent to the construction of an
initial library by the annealing and ligation of many small strands. Incomplete
or irregular ligation can result in shorter than expected strands. We checked
for this, and observed that the majority of the product was of the expected
length. In addition to checking the length of the product, we rigorously ensured
that there is sufficient variability within the initial library by cloning a sample
into E.coli and sequencing their DNA.

Correct strand/primer design is vital

In [3] Adleman originally suggested using random sequences to represent ver-
tices within the given graph. He explained this choice by stating that it was
unlikely that sequences chosen to represent different vertices would share long
common subsequences, and that undesirable features such as hairpin loops
would be unlikely to occur. The selection of random sequences was also sup-
ported by Lipton in [98].

Since the publication of [3] and [98], the use of random sequences has been
called into question [23, 51, 52, 108]. It is clear that for any nontrivial problem,
careful thought must go into the design of sequences to represent potential
solutions if we are to avoid the problems described above.

One major problem we encountered was due to the sequences chosen to
represent target sequences. We made a completely arbitrary decision to differ-
entiate S1 by the sequence AAAAAA, S2 by CCCCCC, and S3 by GGGGGG.
In retrospect, it is clear that this was a bad choice for two main reasons. The
first concerns the S2 and S3 primers. It is clear that, in solution, these primers
are complementary, and are just as likely to anneal to one another as they
are to the target sequences. Obviously, this will greatly reduce the efficiency
of the removal operation. The second problem concerns the melting tempera-
tures of the primers. Because the melting temperatures of the S1 primers was
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far lower than that of the S2 and S3 primers, we observed incomplete removal
of S1 sequences. As a result of these problems, we redesigned the strands, the
modifications being detailed in [6].

PCR can introduce problems

It is unrealistic to assume that our enzymatic method removes 100% of the
targeted strands. We must therefore be prepared to accept that a small pro-
portion of target strands will be left in solution. Normally, this residue would
be undetectable, but the repeated use of PCR can quickly amplify this trace
amount, causing failure of the algorithm being implemented. The experiment
confirmed that our removal method worked, but the use of PCR as a detection
method was far too sensitive for our purposes. Kaplan et al. [87] confirm our
belief that PCR is a major source of errors.

Biotinylated strands can introduce problems

In our experiments we used a biotinylated primer to purify away the “splint”
strands used to construct the initial library. Quite apart from the problems
with biotinylation described earlier, it became clear from our investigations
that this can cause other significant difficulties. We found that the attached
beads “settled out” in solution, dragging the strands to the bottom of the
heating block and affecting the efficiency of the process. We overcame this
problem by incubating the tubes in a rotating oven.

Restriction enzymes are often not as effective as they are claimed
to be

Although various claims are made for the efficiency of restriction enzymes,
in reality they have a nonzero error rate associated with them. We found
that Sau3A was ineffective at cleaving double-stranded DNA, but that MboI
worked perfectly well. This may have been due to the fact that Sau3A is
inefficient at cleaving de novo synthesized DNA.

5.9 Other Laboratory Implementations

In this section we describe several successful laboratory implementations of
molecular-based solutions to NP-complete problems. The objective is not to
give an exhaustive description of each experiment, but to give a high-level
treatment of the general methodology, so that the reader may approach with
confidence the fuller description in the literature.



136 5 Physical Implementations

5.9.1 Chess Games

In [58], Faulhammer et al. describe a solution to a variant of the satisfiability
problem that uses RNA rather than DNA as the computational substrate.
They consider a variant of SAT, the so-called “Knight problem”, which seeks
configurations of knights on an n × n chess board, such that no knight is
attacking any other. Examples of legal and illegal configurations are depicted
in Fig. 5.13.

(a) (b)

Fig. 5.13. (a) Legal configuration. (b) Illegal configuration - both knights can attack
one another

In keeping with our earlier observations, the authors prefer a “mark and de-
stroy” strategy [12] rather than the repeated use of hybridization extraction
to remove illegal solutions. However, the use of an RNA library and ribonu-
clease (RNase) H digestion gives greater flexibility, as one is not constrained
by the set of restriction enzymes available. In this way, the RNase H acts as
a “universal restriction enzyme”, allowing selective marking of virtually any
RNA strands for parallel destruction by digestion.

The particular instance solved in [58] used a 3×3 board, with the variables
a− i representing the squares (Fig. 5.14). If a variable is set to 1 then a knight
is present at that variable’s square, and 0 represents the absence of a knight.

 a b c

d e f

 g h i

Fig. 5.14. Labelling of test board

The 3 × 3 knight problem may therefore be represented as the following in-
stance of SAT:
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((¬h ∧ ¬f) ∨ ¬a) ∧ ((¬g ∧ ¬i) ∨ ¬b) ∧ ((¬d ∧ ¬h) ∨ ¬c) ∧ ((¬c ∧ ¬i) ∨ ¬d) ∧
((¬a ∧ ¬g) ∨ ¬f) ∧ ((¬b ∨ ¬f) ∨ ¬g) ∧ ((¬a ∧ ¬c) ∨ ¬h) ∧ ((¬d ∧ ¬b) ∨ ¬i)

which, in this case, simplifies to

((¬h ∧ ¬f) ∧ ¬a) ∧ ((¬g ∧ ¬i) ∨ ¬b) ∧ ((¬d ∧ ¬h) ∨ ¬c) ∧ ((¬c ∧ ¬i) ∨ ¬d) ∧
((¬a ∧ ¬g) ∨ ¬f).

This simplification greatly reduces the number of laboratory steps required.
The experiment proceeds by using a series of RNase H digestions of “illegal”
board representations, along the lines of the parallel filtering model [12].

Board representations are encoded as follows: the experiment starts with
all strings of the form x1, . . . , xn, where each variable xi takes the value 1
or 0; then, the following operations may be performed on the population of
strings:

• Cut all strings containing any pattern of specified variables pi, . . . , pk

• Separate the “test tube” into several collections of strings (molecules) by
length

• Equally divide (i.e., split) the contents of a tube into two tubes
• Pour (mix) two test tubes together
• Sample a random string from the test tube

The first stage of the algorithm is the construction of the initial library of
strands. Each strand sequence follows the template depicted in Fig. 5.15.

Bit a (0/1) Bit b (0/1) Bit c (0/1) Bit j (0/1)

SpacersPrefix Suffix

Fig. 5.15. Template for RNA strands

The prefix and suffix regions are included to facilitate PCR. Each variable
is represented by one of two unique sequences of length 15 nucleotides, one
representing the fact that the variable is set to 1, and the other the fact that
it is set to 0. Variable regions are separated by short (5 nucleotide) spacer
regions. In order to avoid having to individually generate each individual
sequence, a “mix and split” strategy (described in more detail in [58]) is used.
The RNA version of the library is then generated by in vitro transcription.
The algorithm proceeds as follows:

1. For each square, sequentially, split the RNA library into two tubes, la-
belled 1 and 2. After digestions have taken place, tube 1 will contain
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strands that contain a knight at that square, and tube 2 will contain
strands that do not have knights at that square

2. In tube 1, digest with RNase H strands that have no knight at position
a, as well as strands that describe a knight at attacking positions h and
f. This implements the logical statement ((¬h ∧ ¬f) ∨ ¬a)

3. In tube 2, digest strands that have a knight present at position a
4. Remove the DNA oligos used to perform the above digestions
5. Go to step 1, repeating with square b

Steps 1 through 4 implement the following: “There may or may not be a
knight in square a: if there is, then it is attacking squares h and f, so disallow
this.” The algorithm only needs to be performed for squares a, b, c, d, and f,
as square e, by the rules of chess, cannot threaten or be threatened on a board
this size, and any illegal interactions that squares g, h, and i may have are
with a, b, c, d, and f, and have already been dealt with. At the conclusion
of this stage, any remaining full-length strands are recovered, as they should
encode legal boards.

The “mark and destroy” digestion operation is implemented as follows.
If we wish to retain (i.e., select) strands encoding variable a to have value 1,
DNA oligonucleotides corresponding to the complement of the a = 0 sequence
are added to the tube, and anneal to all strands encoding a = 0. RNase H is
then added to the solution. Ribonuclease H (RNase H) is an endoribonuclease
which specifically hydrolyzes the phosphodiester bonds of RNA hybridized
to DNA. RNase H does not digest single or double-stranded DNA, so his
operation therefore leaves intact only those strands encoding a = 1, in a
fashion similar to the removal operation of the parallel filtering model [12].

The results obtained (described in [58]) were extremely encouraging: out
of 43 output strands sampled, only one contained an illegal board. Given
that the population sampled encoded 127 knights, this gave an overall knight
placement success rate of 97.7%.

5.9.2 Computing on Surfaces

Another experiment that makes use of the “mark and destroy” paradigm [12]
is described in [99]. The key difference between this and previous experiments
is that the DNA strands used are tethered to a support rather than being
allowed to float freely in solution. The authors argue that this approach greatly
simplifies the automation of the (potentially very many) repetitive chemical
processes required during the performance of an experiment.

The authors report a DNA-based solution to a small instance of the SAT
problem (described in Chap. 2). The specific problem solved is

(w ∨ x ∨ y) ∧ (w ∨ ¬y ∨ z) ∧ (¬x ∨ y) ∧ (¬w ∨ ¬y).
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16 unique DNA strands were synthesized, each one corresponding to one of
the 24 = 16 combinations of variable values. The actual encodings are given
in Table 5.5 (taken from [99]).

Table 5.5. Strands used to represent SAT variable values

Strand Sequence wxyz

S0 CAACCCAA 0000
S1 TCTCAGAG 0001
S2 GAAGGCAT 0010
S3 AGGAATGC 0011
S4 ATCGAGCT 0100
S5 TTGGACCA 0101
S6 ACCATTGG 0110
S7 GTTGGGTT 0111
S8 CCAAGTTG 1000
S9 CAGTTGAC 1001
S10 TGGTTTGG 1010
S11 GATCCGAT 1011
S12 ATATCGCG 1100
S13 GGTTCAAC 1101
S14 AACCTGGT 1110
S15 ACTGGTCA 1111

Each of the 16 sets of strands was then affixed to a specific region of a gold
coated surface, so that each solution to the SAT problem was represented as
an individual cluster of strands.

The algorithm then proceeds as follows. For each clause of the problem,
a cycle of “mark”, “destroy”, and “unmark” operations is carried out. The
goal of each cycle is to destroy the strands that do not satisfy the appropriate
clause. Thus, in the first cycle, the objective is to destroy strands that do
not satisfy the clause (w ∨ x ∨ y). Destruction is achieved by “protecting”,
or marking strands that do satisfy the clause by annealing to them their
complementary strands. E.coli exonuclease I is then used to digest unmarked
strands (i.e., any single-stranded DNA).

By inspection of Table 5.5, we see that this applies to only two strands, S0

(0000) and S1 (0001). Thus, in cycle 1 the complements of the 14 other strands

(w = 1(S8, S9, S10, S11, S12, S13, S14, S15);
x = 1(S4, S5, S6, S7, S12, S13, S14, S15);
y = 1(S2, S3, S6, S7, S10, S11, S14, S15))

were combined and hybridized to the surface before the exonuclease I was
added. The surface was then regenerated (the unmark operation) to return
the remaining surface-bound oligos (S2-S15) to single-stranded form. This
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process was repeated three more times for the remaining three clauses, leav-
ing a surface containing only strands encoding a legal solution to the SAT
problem.

The remaining molecules were amplified using PCR and then hybridized
to an addressed array. The results of fluorescence imaging clearly showed four
spots of relatively high intensity, corresponding to the four regions occupied
by legal solutions to the problem (S3, S7, S8, and S9).

Although these results are encouraging as a first move toward more error-
resistant DNA computing, as the authors themselves acknowledge, there re-
main serious concerns about the scalability of this approach (1,536 individual
oligos would be required for a 36-bit, as opposed to 4-bit, implementation).

5.9.3 Gel-Based Computing

A much larger (20 variable) instance of 3-SAT was successfully solved by Adle-
man’s group in an experiment described in [33]. This is, to date, the largest
problem instance successfully solved by a DNA-based computer; indeed, as
the authors state, “this computational problem may yet be the largest yet
solved by nonelectronic means” [33].

The architecture underlying the experiment is related to the Sticker Model
(see Chap. 3) described by Roweis et al. [133]. The difference here is that only
separation steps are used – the application of stickers is not used. Separa-
tions are achieved by using oligo probes immobilized in polyacrylamide gel-
filled glass modules, and strands are pulled through them by electrophoresis.
Strands are removed (i.e., retained in the module) by virtue of their hybridiz-
ing to the immobilized probes, with other strands free to pass through the
module and be subject to further processing. Captured strands may be re-
leased and transported (again via electrophoresis) to other modules for further
processing.

The potential benefits of such an approach are clear; the use of elec-
trophoresis minimizes the number of laboratory operations performed on
strands, which, in turn, increases the chance of success of an experiment.
Since strands are not deliberately damaged in any way, they, together with
the glass modules, are potentially reusable for multiple computations. Finally,
the whole process is potentially automatable, which may take us one step fur-
ther towards a fully integrated DNA-based computer that requires minimal
human intervention.

The problem solves was a 20-variable, 24-clause 3-SAT formula Φ, with a
unique satisfying truth assignment. These are
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Φ = (¬x13 ∨ x16 ∨ x18) ∧ (x5 ∨ x12 ∨ ¬x9) ∧ (¬x13 ∨ ¬x2 ∨ x20) ∧ (x12 ∨ x9 ∨
¬x5) ∧ (x19 ∨ ¬x4 ∨ x6) ∧ (x9 ∨ x12 ∨ ¬x5) ∧ (¬x1 ∨ x4 ∨ ¬x11) ∧ (x13 ∨ ¬x2 ∨
¬x19) ∧ (x5 ∨ x17 ∨ x9) ∧ (x15 ∨ x9 ∨ ¬x17) ∧ (¬x5 ∨ ¬x9 ∨ ¬x12)∧ (x6 ∨ x11 ∨
x4)∧ (¬x15 ∨¬x17 ∨ x7) ∧ (¬x6 ∨ x19 ∨ x13) ∧ (¬x12 ∨ ¬x9 ∨ x5)∧ (x12 ∨ x1 ∨
x14)∧(x20∨x3∨x2)∧(x10∨¬x7∨¬x8)∧(¬x5∨x9∨¬x12)∧(x18∨¬x20∨x3)∧
(¬x10∨¬x18∨¬x16)∧(x1∨¬x11∨¬x14)∧(x8∨¬x7∨¬x15)∧(¬x8∨x16∨¬x10)

with a unique satisfying assignment of

x1 = F, x2 = T, x3 = F, x4 = F, x5 = F, x6 = F, x7 = T, x8 = T, x9 =
F, x10 = T, x11 = T, x12 = T, x13 = F, x14 = F, x15 = T, x16 = T, x17 =
T, x18 = F, x19 = F, x20 = F .

As there are 20 variables, there are 220 = 1, 048, 576 possible truth assign-
ments. To represent all possible assignments, two distinct 15 base value se-
quences were assigned to each variable xk(k = 1, . . . , 20), one representing
true (T), XT

k , and one representing false (F), XF
k . A mix and split generation

technique similar to that of Faulhammer et al. [58] was used to generate a 300-
base library sequence for each of the unique truth assignments. Each library
sequence was made up of 20 value sequences joined together, representing the
20 different variables. These library sequences were then amplified with PCR.

The computation proceeds as follows: for each clause, a glass clause module
is constructed which is filled with gel and contains covalently bound probes
designed to capture only those library strands that do satisfy that clause;
strands that do not satisfy the clause are discarded.

In the first clause module (¬x13 ∨ x16 ∨ x18) strands encoding XF
3 , XF

16,
and XT

18 are retained, while strands encoding XT
3 , XT

16, and XF
18 are discarded.

Retained strands are then used as input to the next clause module, for each
of the remaining clauses. The final (24th) clause module should contain only
those strands that have been retained in all 24 clause modules and hence
encode truth assignments satisfying Φ.

The experimental results confirmed that a unique satisfying truth assign-
ment for Φ was indeed found using this method. Impressive though it is, the
authors still regard with scepticism claims made for the potential superiority
of DNA-based computers over their traditional silicon counterparts. However,
“they enlighten us about alternatives to electronic computers and studying
them may ultimately lead us to the true ‘computer of the future’” [33].

5.9.4 Maximal Clique Computation

The problem of finding a Maximal Clique (see Chap. 2) using DNA is ad-
dressed by Ouyang et al. in [115]. We recall that a clique is a fully connected
subgraph of a given graph. The maximal clique problem asks: given a graph,
how many vertices are there in the largest clique? Finding the size of the
largest clique is an NP-complete problem.



142 5 Physical Implementations

The algorithm proceeds as follows: for a graph G with n vertices, all pos-
sible vertex subsets (subgraphs) are represented by an n-bit binary string
bn−1, bn−2, . . . , b0. For example, given the six-vertex graph used in [115] and
depicted in Fig. 5.16a, the string 111000 corresponds to the subgraph depicted
in Fig. 5.16b, containing v5, v4, and v3.
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Fig. 5.16. (a) Ouyang graph. (b) Example subgraph

Clearly, the largest clique in this graph contains v5, v4, v3, and v2, represented
by the string 111100.

The next stage is to find pairs of vertices that are not connected by an
edge (and, therefore, by definition, cannot appear together in a clique). We
begin by taking the complement of G, G, which contains the same vertex set
as G, but which only contains an edge {v, w} if {v, w} is not present in the
edge set of G. The complement of the graph depicted in Fig. 5.16 is shown in
Fig. 5.17.
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Fig. 5.17. Complement of Ouyang graph

If two vertices in G are connected by an edge then their corresponding
bits cannot both be set to 1 in any given string. For the given problem, we
must therefore remove strings encoding ***1*1 (v2 and v0), 1****1 (v5 and
v0), 1***1* (v5 and v1) and **1*1* (v3 and v1), where * means either 1 or 0.
All other strings encode a (not necessarily maximal) clique.

We must then sort the remaining strings to find the largest clique. This
is simply a case of finding the string containing the largest number of 1s, as
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each 1 corresponds to a vertex in the clique. The string containing the largest
number of 1s encodes the largest clique in the graph.

The DNA implementation of the algorithm goes as follows. The first task
is to construct a set of DNA strands to represent all possible subgraphs. There
are two strands per bit, to represent either 1 or 0. Each strand associated with
a bit i is represented by two sections, its position Pi and its value Vi. All Pi

sections are of length 20 bases. If Vi = 1 then the sequence representing Vi is a
restriction site unique to that strand. If Vi = 0 then the sequence representing
Vi is a 10 base “filler” sequence. Therefore, the longest possible sequence is
200 bases, corresponding to the string 000000, and the shortest sequence is
140 bases, corresponding to 111111. Parallel overlap assembly [85] was then
used to construct the initial library.

The computation then proceeds by digesting strands in the library, guided
by the complementary graph G. To remove strands encoding a connection i, j
in G, the current tube is divided into two, t0 and t1. In t0 we cut strings
encoding Vi = 1 by adding the restriction enzyme associated with Vi. In t1 we
cut strings encoding Vj = 1 by adding the restriction enzyme associated with
Vj . For example, to remove strands encoding the connection between V0 and
V2, we cut strings containing V0 = 1 in t0 with the enzyme Afl II, and we cut
strings containing V2 = 1 in t1 with Spe I. The two tubes are then combined
into a new working tube, and the next edge in G is dealt with.

In order to read the size of the largest clique, the final tube was simply
run on a gel. The authors performed this operation, and found the shortest
band to be 160 bp, corresponding to a 4-vertex clique. This DNA was then
sequenced and found to represent the correct solution, 111100.

Although this is another nice illustration of a DNA-based computation,
the authors acknowledge the lack of scalability of their approach. One major
factor is the requirement that each vertex be associated with an individual
restriction enzyme. This, of course, limits the number of vertices that can
be handled by the number of restriction enzymes available. However, a more
fundamental issue is the exponential growth in the problem size (and thus the
initial library), as has already been noted.

5.9.5 Other Notable Results

In this section we briefly introduce other notable experimental results, and
bring attention to “late-breaking” results.

One of the first successful experiments reported after Adleman’s result is
due to Guarnieri et al. [71], in which they describe a DNA-based algorithm
for binary addition. The method uses single-stranded DNA reactions to add
together two nonnegative binary numbers. This application, as the authors
note, is very different from previous proposals, which use DNA as the substrate
for a massively parallel random search.

Adding binary numbers requires keeping track of the position of each digit
and of any “carries” that arise from adding 1 to 1 (remembering that 1 +
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1 = 0 plus carry 1 in binary). The DNA sequences used represent not only
binary strings but also allow for carries and the extension of DNA strands to
represent answers. Guarnieri et al. use sequences that encode a digit in a given
position and its significance, or position from the right. For example, the first
digit in the first position is represented by two DNA strands, each consisting of
a short sequence representing a “position transfer operator”, a short sequence
representing the digit’s value, and a short sequence representing a “position
operator.”

DNA representations of all possible two bit binary integers are constructed,
which can then be added in pairs. Adding a pair involves adding appropri-
ate complementary strands, which then link up and provide the basis for
strand extension to make new, longer strands. This is termed a “horizontal
chain reaction”, where input sequences serve as templates for constructing
an extended result strand. The final strand serves as a record of successive
operations, which is then read out to yield the answer digits in the correct
order.

The results obtained confirmed the correct addition of 0 + 0, 0 + 1, 1 +
0, and 1 + 1, each calculation taking between 1 and 2 days of bench work.
Although limited in scope, this experiment was (at the time) one of the few
experimental implementations to support theoretical results.

The tendency of DNA molecules to self-anneal was exploited by Sakamoto
et al. in [135] for the purposes of solving a small instance of SAT. The authors
encode the given formula in “literal strings” which are conjunctions of the
literals selected from each SAT clause (one literal per clause). A formula is
satisfiable if there exists a literal string that does not contain any variable
together with its negation. If each variable is encoded as a DNA subsequence
that is the Watson-Crick complement of its negation then any strands con-
taining a variable and its negation self-anneal to form “hairpin” structures.
These can be distinguished from non-hairpin structure-forming strands, and
removed. The benefit of this approach is that it does not require physical
manipulation of the DNA, only temperature cycling. The drawback is that it
requires 3m literal strings for m clauses, thus invoking once again the scala-
bility argument.

Algorithmic self-assembly (as described in Chap. 3) has been demon-
strated in the laboratory by Mao et al. [103]. This builds on work done on
the self-assembly of periodic two-dimensional arrays (or “sheets”) of DNA
tiles connected by “sticky” pads [161, 163]. The authors of [103] report a
one-dimensional algorithmic self-assembly of DNA triple-crossover molecules
(tiles) to execute four steps of a logical XOR operation on a string of binary
bits.

Triple-crossover molecules contain four strands that self-assemble through
Watson-Crick complementarity to produce three double helices in roughly a
planar formation. Each double helix is connected to adjacent double helices
at points where their strands cross over between them. The ends of the core
helix are closed by hairpin loops, but the other helices may end in sticky ends
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which direct the assembly of the macrostructure. The tiles then self-assemble
to perform a computation. The authors of [103] report successful XOR compu-
tations on pairs of bits, but note that the scalability of the approach relies on
proper hairpin formation in very long single-stranded molecules, which cannot
be assumed.

We now briefly describe some “late-breaking” results. The construction of
molecular automata (see Chap. 3) was demonstrated by Benenson et al. in [27].
This experiment builds on the authors’ earlier work [28] on the construction
of biomolecular machines. In [27], the authors describe the construction of a
molecular automaton that uses the process of DNA backbone hydrolysis and
strand hybridization, fuelled by the potential free energy stored in the DNA
itself.

Related work, due to Stojanovic and Stefanovic [147], describes a molec-
ular automaton that plays the game of tic-tac-toe (or noughts and crosses)
against a human opponent. The automaton is a Boolean network of deoxri-
bozymes incorporating 23 molecular-scale logic gates and one constitutively
active deozyribozyme arrayed in a 3×3 well formation (to represent the game
board). The human player signals a move by adding an input oligo, and the
automaton’s move is signalled by fluorescence in a particular well. This cycle
continues until there is either a draw or a victory for the automaton, as it
plays a perfect strategy and cannot be defeated.

5.10 Summary

In this chapter we have described in depth the experimental realization of
some of the abstract models of DNA computation described in Chap. 2. We
described Adleman’s seminal experiment, as well as a potential implementa-
tion of the parallel filtering model, which laid the foundations for important
later work on destructive algorithms. We also described some key contribu-
tions to the laboratory implementation of computations, and highlighted some
late-breaking results.

5.11 Bibliographical Notes

The use of molecules other than DNA (for example, proteins and chemical
systems) is reviewed and discussed in [144]. Chen and Wood [44] review early
work on implementations of biomolecular computatons, and suggest poten-
tially useful lines of enquiry. The recent proceedings of the International Work-
shop on DNA Based Computers [43, 73] contain many articles on laboratory
implementations, including notable papers on whiplash PCR [105] and DNA-
based memory [42].
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Cellular Computing

“The punched tape running along the inner seam of the double he-
lix is much more than a repository of enzyme stencils. It packs itself
with regulators, suppressors, promoters, case-statements, if-thens.”
Richard Powers, The Gold Bug Variations [122]

Complex natural processes may often be described in terms of networks of
computational components, such as Boolean logic gates or artificial neurons.
The interaction of biological molecules and the flow of information controlling
the development and behavior of organisms is particularly amenable to this
approach, and these models are well-established in the biological community.
However, only relatively recently have papers appeared proposing the use of
such systems to perform useful, human-defined tasks. For example, rather than
merely using the network analogy as a convenient technique for clarifying our
understanding of complex systems, it may now be possible to harness the
power of such systems for the purposes of computation. In this chapter we
review several such proposals, focusing on the molecular implementation of
fundamental computational elements. We conclude by describing an instance
of cellular computation that has emerged as a result of natural evolution: gene
unscrambling in ciliates.

6.1 Introduction

Despite the relatively recent emergence of molecular computing as a distinct
research area, the link between biology and computer science is not a new
one. Of course, for years biologists have used computers to store and analyze
experimental data. Indeed, it is widely accepted that the huge advances of
the Human Genome Project (as well as other genome projects) were only
made possible by the powerful computational tools available. Bioinformatics
has emerged as “the science of the 21st century”, requiring the contributions
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of truly interdisciplinary scientists who are equally at home at the lab bench
or writing software at the computer.

However, the seeds of the relationship between biology and computer sci-
ence were sown over fifty years ago, when the latter discipline did not even
exist. When, in the 17th century, the French mathematician and philosopher
René Descartes declared to Queen Christina of Sweden that animals could be
considered a class of machines, she challenged him to demonstrate how a clock
could reproduce. Three centuries later in 1951, with the publication of “The
General and Logical Theory of Automata” [151] John von Neumann showed
how a machine could indeed construct a copy of itself. Von Neumann believed
that the behavior of natural organisms, although orders of magnitude more
complex, was similar to that of the most intricate machines of the day. He
believed that life was based on logic.

Twenty years later, the Nobel laureate Jacques Monod identified specific
natural processes that could be viewed as behaving according to logical prin-
ciples:

“The logic of biological regulatory systems abides not by Hegelian
laws but, like the workings of computers, by the propositional algebra
of George Boole.” [109]

This conclusion was drawn from earlier work of Jacob and Monod [110]. In
addition, Jacob and Monod described the “lactose system” [82], which is one
of the archetypal examples of a Boolean system. We now describe this system
in detail.

Genes are composed of a number of distinct regions, which control and
encode the desired product. These regions are generally of the form promoter–
gene–terminator (Fig. 6.1). Transcription may be regulated by effector
molecules known as inducers and repressors, which interact with the pro-
moter and increase or decrease the level of transcription. This allows effective
control over the expression of proteins, avoiding the production of unnecessary
compounds. It is important to note at this stage that genetic regulation does
not conform to the digital “on-off” model that is popularly portrayed; rather,
it is continuous or analog in nature.

One of the most well-studied genetic systems is the lac operon. An operon
is a set of functionally related genes with a common promoter. An example of
this is the lac operon, which contains three structural genes that allow E.coli
to utilize the sugar lactose.

When E.coli is grown on the common carbon source glucose, the product
of the lacI gene represses the transcription of the lacZYA operon (Fig. 6.2).
However, if lactose is supplied together with glucose, a lactose by-product
is produced which interacts with the repressor molecule, preventing it from
repressing the lacZYA operon. This de-repression does not itself initiate tran-
scription, since it would be inefficient to utilize lactose if the more common
sugar glucose were still available. The operon is positively regulated by the
CAP-cAMP (catabolite activator protein: cyclic adenosine monophosphate)
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PROMOTER TERMINATORSTRUCTURAL GENE(S)

Fig. 6.1. Major regions found within a bacterial operon
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Fig. 6.2. Repressed state of the lac operon by the lacI gene product
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Fig. 6.3. Induced state of the lac operon

complex, whose level increases as the amount of available glucose decreases.
Therefore, if lactose were present as the sole carbon source, the lacI repression
would be relaxed and the high CAP-cAMP levels would activate transcrip-
tion, leading to the synthesis of the lacZYA gene products (Fig. 6.3). Thus,
the promoter is under the control of two sugars, and the lacZYA operon is
only transcribed when lactose is present and glucose is absent.

It is clear that we may view the lac operon in terms of the Boolean AND
function, in that it has output value 1 if transcribed, and 0 otherwise. The
presence/absence of glucose corresponds to the gate’s first input being equal
to 0/1, and the presence/absence of lactose corresponds to the gate’s second
input being 1/0 (note the difference in representation between the two sugars).
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6.2 Successful Implementations

We now briefly introduce several successful examples of how bacteria have
been successfully re-engineered for the purposes of computation. In 1999,
Weiss et al. [158] described a technique for mapping digital logic circuits onto
genetic regulatory networks such that the resulting chemical activity within
the cell corresponds to the computations specified by the digital circuit. There
was a burst of activity in 2000, when two papers appeared in the same issue
of Nature, both being seminal contributions to the field. In [57], Elowitz and
Leibler described the construction of an oscillator network that periodically
caused a culture of E.coli to glow by expressing a fluorescent protein. Crucially,
the period of oscillation was slower than the cell division cycle, indicating that
the state of the oscillator is transmitted from generation to generation. In [62],
Gardner et al. implemented a genetic toggle switch in E.coli. The switch is
flipped from one stable state to another by either chemical or heat induction.

These “single cell” experiments demonstrated the feasibility of implement-
ing artificial logical operations using genetic modification. In [137], Savageau
addresses the issue of finding general design principles among microbial ge-
netic circuits, citing several examples. Several more examples of successful
work on cellular computing may be found in [7].

6.3 Gene Unscrambling in Ciliates

Ciliate is a term applied to any member of a group of around 10,000 different
types of single-celled organism that are characterized by two features: the
possession of hair-like cilia for movement, and the presence of two kinds of
nuclei instead of the usual one. One nucleus (the micronucleus) is used for
sexual exchange of DNA, and the other (the macronucleus) is responsible
for cell growth and proliferation. Crucially, the DNA in the micronucleus
contains an “encoded” description of the DNA in the working macronucleus,
which is decoded during development. This encoding “scrambles” fragments
of the functional genes in the macronucleus by both the permutation (and
possible inversion) of partial coding sequences and the inclusion of non-coding
sequences. A picture of the ciliate Oxytricha nova is shown in Fig. 6.4.

It is the macronucleus (that is, the “housekeeping” nucleus) that provides
the RNA “blueprints” for the production of proteins. The micronucleus, on
the other hand, is a dormant nucleus which is activated only during sexual
reproduction, when at some point a micronucleus is converted into a macronu-
cleus in a process known as gene assembly. During this process the micronu-
clear genome is converted into the macronuclear genome. This conversion
reorganizes the genetic material in the micronucleus by removing noncoding
sequences and placing coding sequences in their correct order. This “unscram-
bling” may be interpreted as a computational process.
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Fig. 6.4. Oxytricha nova (Picture courtesy of D.M. Prescott)

The exact mechanism by which genes are unscrambled is not yet fully under-
stood. We first describe experimental observations that have at least suggested
possible mechanisms. We then describe two different models of the process. We
conclude with a discussion of the computational and biological implications
of this work.

6.4 Biological Background

The macronucleus consists of millions of short DNA molecules that result
from the conversion of the micronuclear DNA molecules. With few exceptions,
each macronuclear molecule corresponds to an individual gene, varying in size
between 400 b.p. (base pairs) and 15,000 b.p. (the average size is 2000 b.p.).
The fragments of macronuclear DNA form a very small proportion of the
micronucleus, as up to 98% of micronuclear DNA is noncoding, including
intergenic “spacers” (that is, only ∼ 2% of the micronucleus is coding DNA),
and all noncoding DNA is excised during gene assembly.

6.4.1 IESs and MDSs

The process of decoding individual gene structures is therefore what interests
us here. In the simplest case, micronuclear versions of macronuclear genes
contain many short, noncoding sequences called internal eliminated sequences,
or IESs. These are short, AT-rich sequences, and, as their name suggests, they
are removed from genes and destroyed during gene assembly. They separate
the micronuclear version of a gene into macronuclear destined sequences, or
MDSs (Fig. 6.5a). When IESs are removed, the MDSs making up a gene



152 6 Cellular Computing

are “glued” together to form the functional macronuclear sequence. In the
simplest case, IESs are bordered on either side by pairs of identical repeat
sequences (pointers) in the ends of the adjacent MDSs (Fig. 6.5b).

MDSs 1 2 3
(a)

(b)

IES1 IES2

MDS1 IES1 MDS2

Fig. 6.5. (a) Schematic representation of interruption of MDSs by IESs. (b) Repeat
sequences in MDSs flanking an IES (the outgoing repeat sequence of MDS1 is equal
to the incoming repeat sequence of MDS2)

6.4.2 Scrambled Genes

In some organisms, the gene assembly problem is complicated by the “scram-
bling” of MDSs within a particular gene. In this situation, the correct ar-
rangement of MDSs in a macronuclear gene is present in a permuted form in
the micronuclear DNA. For example, the actin I gene in Oxytricha nova is
made up of 9 MDSs and 8 IESs, the MDSs being present in the micronucleus
in the order 3–4–6–5–7–9–2–1–8, with MDS2 being inverted [126]. During the
development of the macronucleus, the MDSs making up this gene are rear-
ranged into the correct order at the same time as IES excision. Scrambling
is often further complicated by the fact that some MDSs may be inverted (a
180◦ point rotation).

6.4.3 Fundamental Questions

Ciliates are remarkably successful organisms. The range of DNA manipulation
and reorganization operations they perform has clearly been acquired during
millennia of evolution. However, some fundamental questions remain: what
are the underlying molecular mechanisms of gene reconstruction and how did
they evolve, and how do ciliates “know” which sequences to remove and which
to keep?

Concerning the first question, Prescott proposes [123] that the “compres-
sion” of a working nucleus from a larger predecessor is part of a strategy
to produce a “streamlined” nucleus in which “every sequence counts” (i.e.,
useless DNA is not present). This efficiency may be further enhanced by the
dispersal of genes into individual molecules, rather than having them being
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joined into chromosomes. However, so far we still know very little about the
details and evolutionary origins of this intricate underlying molecular “ma-
chinery.”

We may, perhaps, have more success in attempting to answer the second
question: how are genes successfully reassembled from an encoded version?
In the rest of this chapter we address this question from a computational
perspective, and describe two extant models that describe the rearrangement
process.

6.5 Models of Gene Construction

We now present a review of two models that attempt to shed light on the
process of macronuclear gene assembly. The first model was formulated by
Landweber and Kari in [88], where they propose two main operations that
model the process of inter- and intramolecular recombination. These can be
used to unscramble a micronuclear gene to form a functional copy of the gene
in the macronucleus. Both of these operations are based on the concept of
repeat sequences “guiding” the unscrambling process.

The first operation takes as input a single linear DNA strand containing
two copies of a repeat sequence x. The operation then “folds” the linear strand
into a loop, thus aligning the copies of x. The operation then “cuts” the
strands in a specific “staggered fashion” within the first copy of x and the
second copy of x, creating three strands (ux, wx and v). The operation finally
recombines ux and v, and wx forms a circular string. The output of the
operation is therefore a linear string and a circular string. This operation
mimics the excision of an IES that occurs between two MDSs that are in the
correct (i.e., unscrambled) order. In this case the IES is excised as a circular
molecule and the two MDSs are “sewn” together to make a single larger MDS.

The second operation takes as input a single linear strand and a separate
circular strand. The operation takes two inputs and creates a single linear
strand. This allows the insertion of the linear form of the circular strand
within the linear strand and mimics intermolecular recombination.

The second model, proposed by Prescott, Ehrenfeucht and Rozenberg (see,
for example, [125]), is based on three intramolecular operations (that is, a
single molecule folds on itself and swaps part of its sequence through recom-
bination). In this model, we assume full knowledge of the pointer structure of
the molecule.

The first operation is the simplest, and is referred to as loop, direct-repeat
excision. This operation deals with the situation depicted in Fig. 6.6, where
two MDSs (x and z) in the correct (i.e., unscrambled) order are separated by
an IES, y.

The operation proceeds as follows. The strand is folded into a loop with
the two identical pointers aligned (Fig. 6.6a), and then staggered cuts are
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(a)  (b) (c)

x

y

z

x

y

z

x z

y

Fig. 6.6. Excision

made (Fig. 6.6b). The pointers connecting the MDSs then join them together,
while the IES self-anneals to yield a circular molecule (Fig. 6.6c).

The second operation is known as hairpin, inverted repeat excision, and
is used in the situation where a pointer has two occurrences, one of which
is inverted. The molecule folds into a hairpin structure (Fig. 6.7a) with the
pointer and its inversion aligned, cuts are made (Fig. 6.7b) and the inverted
sequence is reinserted (Fig. 6.7c), yielding a single molecule.

(b)(a)

(c)

Fig. 6.7. Inversion

The third and final operation is double-loop, alternating direct repeat exci-
sion/reinsertion. This operation is applicable in situations where two repeats
of two pointers have interleaving occurrences on the same strand. The double
loop folding is made such that the two pairs of identical pointer occurrences
are aligned (Fig. 6.8a), cuts are made (Fig. 6.8b) and the recombination takes
place, yielding the molecule from Fig. 6.8c.

The process by which gene assembly takes place using these operations
and the computational properties of the system are discussed in detail in [56].
However, the important difference between this model and that of Landweber
and Kari is that it is more concerned with the mechanics of the gene assembly
process than the computational power of an abstraction of the natural system.
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Fig. 6.8. Excision/inversion

The model has been successfully applied to all known experimental data on
the assembly of real genes, including the actin I gene of Urostyla grandis and
Engelmanniella mobilis, the gene encoding α telomere binding protein in sev-
eral stichotrich species, and assembly of the gene encoding DNA polymerase
α in Sterkiella nova. Descriptions of these applications are presented in [124].

6.6 Summary

In this chapter we have introduced the notion of computing with and inside
living cells and reviewed several models for the assembly of genes in ciliates.
Although the fundamental molecular mechanisms underlying the operations
within these models are still not well-understood, they do suggest possible
areas of experimental enquiry. Looking further ahead, it may well be that
in the future these mechanisms may even be exploited by using ciliates as
prototype cellular computers. This engineering process has already begun,
and we have cited several successful examples of the genetic modification of
organisms for computational purposes.
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6.7 Bibliographical Notes

A comprehensive review of the state of the art in cellular computing is [7].
The definitive text on computation in ciliates is [55], which covers both the
biological and theoretical aspects of this area of research.
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